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FOREWORD

These Transactions preserve in print most of the invited addresses

and contributed papers of the Twenty-first Conference of Army Mathemati­

cians. These meetings are sponsored by the Army Mathematics Steering

Committee (AMSC) on behalf of the Office of the Chief of Research, Develop­

ment and Acquisition. Members of this Committee request that the guest

lecterers be effective researchers who are in frontier fields of live

current interest. They feel that the addresses by the invited speakers

as well as contributed papers by Army per~onnel will stimulate the inter­

changes of ideas among the scientists attending said meetings.

In June of 1973, Messrs. W. A. McCool and William Sheperd of the

White Sands Missile Range called the Army Research Office (ARO) to inquire

about the possibility of holding either the Twentieth or the Twenty-first

Conference of Army Mathematicians at their installation. Since the next,

the Twentieth Conference, had been scheduled for the US Army Natick Labor­

aotires, these gentlemen were thanked and advised that a written offer to

host the 1975 meeting would be appreciated. Dr. Richard H. Duncan, Tech­

nical Director and Chief Scientist of the White Sands Missile Range, in a

letter dated 10 May 1974 issued a formal invitation to hold this meeting

at his installation. Part of his letter is quoted below:

I cordially invite the Applied Mathematics Subcommittee, US Army
Mathematics Steering Committee, to hold the Twenty-First Confer­
ence of Army Mathematicians at the US Army White Sands Missile
Range, NM, in May 1975. We would be pleased to serve as host to
the conference.
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I believe a conference held here would attract a number of
Western Army Mathematicians who do not normally attend the
conferences. Their attendance and participation would be
of substantial benefit to the Army installations in our
area.

If the conference is held here, Mr. P. J. Higgins, Chief of the
Analysis and Computation Division, National Range Operations
Directorate, will be in charge of local arrangements. Please
contact him for additional information.

Over 115 Army and academic scientists attended this 14-16 May 1975

conference, which convened in E1 Paso, Texas. It is pleasing to note

that over hald of these individuals were from the host installation. On

the afternoon of the second day of the meeting, Mr. P. J. Higgins, the

Chairman on Local Arrangments, arranged a trip to the White Sands Missile

Range and a very interesting tour of that base. Those in attendance are

indebted to him and members of his staff for this three day meeting.

The success of this conference was due to many persons, including

the active and enthusiastic members of the audience, the chairmen of the

sessions, and authors of the many papers. The members of the AMSC would

like to thank these gent1ement for taking time to prepare papers for

these Transactions so that many persons unable to attend this symposium

can profit by their contributions to the scientific literature.
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PROGRN1

21st CONFERENCE OF ARMY MATHEMATICIANS
US Army White Sands ~1i ss il e Range, NevI t1exi co

All general and technical sessions will be held in the Rodeway Inn (Bassett
Center) 6201 Gateway West. El Paso, Texas.

0845--0900

0900-1000

REGISTRATION - ERICA ROOM

OPENING OF THE CONFERENCE WELCOMING REMARKS - ERICA ROOM

GENERAL SESSION I - ERICA ROOM

1000··'020

SPEAKER:

TITLE:

CHAI Rr\1AN :

BREAK

Professor A1drl J. Hofflnan
Mathematical Sciences
IBM Thomas J. Watson Research Center
P.O. Box 218
Yorktown Heights, New York 10598

Graph Theory and Eigenvalues of Mcttrices

Dr. Ivan R. Hershner, Jr.
Room 3E 453
The Pentagon
HQDA (DAt-1A-ARZ-D)
Washington, D. C. 20310

1020-1200 TECHNIC.t\L SESSION I - ERICA ROor·l

CHAI Rr~AN : Dr. Edl-/al'd \·1. Ross, .Jr.
Staff Mathematician
US Arn~ Natick Laboratories
Natick, Massachusetts 01760
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Hednesday AM

1020-1200 TECHNICAL SESSION I (Continued)

1020-1200

EFFECTS OF CONCENTRATED MASS AND THRUST DIRECTIONAL
CONTROL ON THE STABILITY OF FREE-FREE BEAMS

Julian J. Wu. B~n~t Weapons Laboratory. Watervliet
Arsenal. Watervliet. New York

THE STANDARD LINEAR MODEL IN THE STABILITY AND MASS
OPTI~lI ZATION OF NONCONSERV,UI VE EULER BEAr·1S

Cha rl es R. Thomas. B~n~t \'Jeapons LaboratoY'y, Water'll iet
Arsenal. Watervliet, New York

BUCKLING OF ORTHOTROPIC RECTANGULAR CYLINDERS
Earl C. Steeves, US Army Natick Laboratories. Natick.
Massachusetts

ENERGY RELEASE RATE IN TERMS OF COMPLEX ANALYTIC
FUNCTIONS

M. A. Hussain and S. L. Pu, Watervliet Arsenal~ Watervliet,
New York

TECHNICAL SESSION II - TROPHY ROOM

CHAIRMAN: Dr. Badrig M. Kurkjian
At-1CRD-R
5001 Eisenhower Avenue
Alexandria. Virginia 22304

DEVELOPMENT AND APPLI CATION OF DYNA~lI C r·1ATHH1ATI CAL
MODELS FOR EVALUATION OF MILITARY SYSTEMS, FORCES
AND DOCTRINE

Roger F. ~;i 11 is, US Army Combi ned Arms Comba t
Development Activity, Ft. Leavem-lOrth, Kansas

APPLIED TECHNIQUES OF ACQUISITION AND PRODUCTION COST
ANALYSIS

Van A. Puryear. US Army Troop Support Command.
St. Louis, Missouri

HOMEOSTATIC CRITERIA FOR ASSESSMENT OF THE MORPHOLOGICAL
STATE OF LARGE SCALE HYBRID ANALOG-SInULATION Cor·1PUTER
MODELS

HOI'/ard ~t Bratt. US Army Air r~obi1ity Research and
Development Laboratory, Ft. Eustis. Virginia
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1200-1300

1330-1500

Wednesday PM

LUNCH

TECHNICAL SESSION III - ERICA ROOM

CHAIRMAN: Professor Ben Noble
Mathematics Research Center
University of Wisconsin-Madison
610 Walnut Street
Madison, Wisconsin 53706

1300-1500

THE APPLICATION OF INFINITESIMAL TRANSFORMATION GROUPS
TO THE SOLUTION OF NONLINEAR PARTIAL DIFFERENTIAL
EQUATION

Dr. George Ullrich, US Army Mobility Equipment
Research and Development Center, Ft. Belvoir,
Virginia

ON UNIQUENESS IN PIECEWISE POLYNOMIAL APPROXIMATION
C. K. Chui, P. W. Smith, and J. D. Ward, Texas A &M
University

LINEAR GENERALIZATIONS OF THE GRONWALL-REID-BELLMAN LEMMA
Dr. Jagdish Chandra and Paul Wm. Davis, US Army Researcn
Office, Durham, North Carolina

A METHOD FOR THE SOLUTION OF TWO-POINT BOUNDARY VALUE
PROBLEMS BASED ON THE USE OF VOLTERRA INTEGRAL OPERATIONS

Professor Louis B. Rall, Mathematics Research Center,
University of Wisconsin, Madison, Wisconsin and H. Fuj~ta,

University of Tokyo, Japan

TECHNICAL SESSION IV - TROPHY ROOM

CHAIRMAN: To be announced later

THE INFLUENCE OF STACKING SEQUENCE ON THE DYNAMIC
BEHAVIOR OF COMPOSITE STRUCTURES

Tien-Yu Tsui, US Army Materials and Mechanics Research
Centers, Watertown, Massachusetts

STRESS FIELDS AROUND PRE-CUT DAMAGE IN STIFFENED
COMPOSITE PANELS

Chatta Lakshmikantham, US Army Materi a1sand r·lechani C$

Research Center, Watertown, Massachusetts
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Wednesday PM

1300-1500 TECHNICAL SESSION IV (Continued)

1500-1520

1520-1620

NONLINEAR VIBRATION THEORY OF PAVEMENTS
Richard A. Weiss, US Army Engineer Waterways Experiment
Station, Vicksburg, Mississippi

APPLICATION OF THE THEORY OF SLENDER CURVED RODS TO THE
ANALYSIS OF ELASTIC YARNS

N. C. Huang, Mathematics Research Center, University
of Wisconsin, Madison, Wisconsin

BREAK

GENERAL SESSION II - ERICA ROOM

SPEAKER:

TITLE:

CHAIRMAN:

Professor Donald. Cohen *
Division of Mathematics
California Institute of Technology
1201 E. California Boulevard
Pasadena, California 91109

Nonlinear Problems in Chemically Reacting
Diffusive Systems

Dr. J. Barkley Rosser
Mathematics Research Center
University of Wisconsin-Madison
610 Walnut Street
Madison, Wisconsin 53706

***************************************************************************

Thursday, 15 May 1975

0830-1000 TECHNICAL SESSION V - ERICA ROOM

CHAIRMAN: Dr. M. A. Hussain
Maggs Research Center
Watervliet Arsenal
Watervliet, New York 12189

*Dr. Viterbi spoke in General Session II.
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Thursday AM

0830-1000 TECHNICAL SESSION V (Conti nued)

CHAIRMAN:

0830-1000

HEAT-BALANCE METHODS IN r~EL TING PROBLn1S
Professor Ben Noble, Mathematics Research Center,
University of Wisconsin, Madison, I·Jisconsin

THE EFFECT OF VARIABLE DENSITY ON TRArlSIENT SHE,D..R FDRCES
IN GUN BARRELS

Rao V. S. Yalamanchili, General Thomas J. Rod~an

Laboratory, Rock Island Arsenal, Rock Island, 11lino~s

NONLINEAR PROBLEMS IN THE INTERACTION OF A STEEL
CARTRIDGE CASE AND CHAMBER

J. J. Toal and S. C. Chu, General Thomas J. Rod~an

Laboratory, Rock Island Arsenal, Rock Island, Illincis

NINE-POINT DIFFERENCE SOLUTIONS FOR POISSON'S EQUATION
Professor J. Barkley Rosser, Mathematics Research
Center, University of l~isconsin, f'1adison, l~iscor.sin

TECHNICAL SESSION VI - TURQUOISE ROm1

Commander
US Army Material Command
ATTN: AtKRD- TV

Mr. Herbert Cohen
Washington, D. C. 20315

ILLUMINATING ROUND EFFECTIVENESS MODELING
Dr. Martin Messinger and L. Oleniczak, Picatinny
Arsenal, Dover, New Jersey

PROBABILITY OF SIGNAL SYNCHRONIZATIOn TIr'1ES
Jacob Benson, Communications/Automatic Data Pr:cess~~;

Laboratory, US Army E1 ectroni cs Con1i1:and, Ft. :'~on;:~cutr1,

New Jersey

LAUNCHING OF ELECTROMAGNETIC SURFACE WAVES AT A PL~~AR

METAL-AIR INTERFACE
J. M. Zavada and E. L. Church, Frankford Arsenal,
Philadelphia, Pennsylvania
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Thursday AM

0830-1000 TECHNICAL SESSION VI (Conti nued)

CHAIRt~AN :

1000-1020

1020-1145

DETERMINATION OF PROPAGATION CONSTANTS Hi SCATTERInG
FROM DIELECTRIC-COATED WIRES

Dr. Leon' Kotin, Communications/Automatic Data Prccess­
ingLaboratory, US Army Electronics CC:1mand, Ft.
Monmouth, New Jersey

BREAK

TECHNICAL SESSION VII - ERICA ROOM

Dr. Clyde A. Morrison
Branch 320
Harry Diamond Laboratories
2800 Powder Mill Road
Adelphi, Maryland 20783

COMPARISON OF PERTURBATION- THEORETI C AND EXACT CALCULATI \
OF NONLINEAR OPTI CAL PROPERTI ES OF OPTO-aECTRO~1I C :'~ATER ,:. S

L. M. Narducci and R. A. Shatas, Physical Sciences
Directorate, US Army Missile Command, Redstone Arsenal,
Alabama, S. S. Mitra, Department of Electrical Enginee~­

ing, University of Rhode Island, Kingston, Rhode Islar:

A TIME-DEPENDENT QUANTI ZED NATURAL COLLI SION COORDI :~ATES
METHOD

Norman M. Hitriol, Physical Sciences Directorate, US
Army Missile Command, Redstone Arsenal, Alabama

••
CANONICAL TRANSFOR~1ATIONS OF THE SCHRODI:JGER EQUATIO~i

AND THE COHERENT STATE REPRESENTATION
Charles M. Bowden, Physical Sciences Directorate, US
Army ~li ss i 1e Command, Reds tone Arsena 1, Alabama

SIMULATION OF THE INTERMEDIATE BALLISTI C ENVI RONMENT OF
ASMALL ARM

Csaba K. Zoltani, Applied Mathematics and Sciences
Laboratory, US Army Ballistic Research Laboratories,
Aberdeen Provi ng Ground, f'1a ryl and

xiii



1020-1145

Thursday AM &PM

TECHNICAL SESSION VIII - TURQUOISE ROOM

CHAIRMAN: Mr. A. S. Elder
Interior Ballistics Laboratory
US Army Ballistic Research Laboratories
Aberdeen Proving Ground. Maryland 21005

1145-1300

1300-1400

1400-1445

1445-1455

1455-1555

1555-1700

GENERALIZED SHOCK WAVE PHYSICS-ELECTROMAGNETIC AND
SECOND SOUND SHOCKS

Paul Harris, Picatinny Arsenal, Dover, New Jersey

ON RIEMANN'S INVARIANT AND SHOCK IMPEDANCE OF SOLIDS
Y. K. Huang. Watervliet Arsenal. Watervliet. New York

FREQUENCY DEPENDENT WAVE ARRIVAL TIME DELAYS IN DISPERSIVE
MEDIA

J. R. Stabler. E. A. Baylot. and D. H. Cress. Mobility
and Environmental Systems Laboratory. US Army Engineer
Waterways Experiment Station. Vicksburg, Mississippi

INBORE MOTION OF ARTILLERY SHELLS
Evans H. Walker. Materiels Application Group. Ballistic
Research Laboratories. Aberdeen Proving Ground, Maryland

LUNCH

Travel by bus from Rodeway Inn to building 300; White
Sands Missile Range. New Mexico

Briefing on National Range Operations - Conference Room
Buil di ng 300.

BREAK

Observation of missile firings or tour of Nuclear Effects
Laboratory, Solar Furnace facilities (depending on range
schedule)

Travel by bus from ~~hite Sands r~issile Range to Rodeway Inn

xiv



0800-0940

Fri day ~ 16 ~1ay 1975

TECHNICAL SESSION IX - ERICA ROOM

CHAI Rr~AN: Di recto r
US Army Ai r f'1obil i ty R&D Laboratory
ATTN: SAVDL-AS (Dr. John D. Hwang)
NASA Ames Research Center~ ~ail Stop 207-5
Moffett Field~ California 94035

CHAIRMAN:

0800-0940

THE METHOD OF PARAGOLIC SUBSTITUTION FOR HIGH SUBSONIC
FLOW

Robert E. Singleton and K. Oswatitsch~ US Army Research
Office~ Durham~ North Carolina

THE BACKWARD BEAM EQUATION AND THE NUMERICAL COMPUTATION
OF DISSIPATIVE EQUATIONS BACKt~ARDS IN TH1E

Alfred Carasso, Mathematics Research Center, Universi~'

of Wisconsin, Madison, Wisconsin

SPECIAL SOLUTIONS OF THE ONE-DH1nISIONAL PARABOLIC EQUATIC',
Siegfried H. Lehnigk, Physical Sciences Directorate~

US Army Missile Command, Redstone Arsenal, Alabama

INTEGRATION OFJco F(x) J (ax) J1(bx) dx
o 0

Sunsuke Takagi, US Army Cold Regions Research and
Engineering Laboratory, Hanover, Ne\4 Har:~pshire

SINGULAR PERTURBATION ANALYSIS IN DIFFUSIO:J AND HEAT
CONDUCTION PROBLEMS

John F. Polk~ Applied Mathematics and Sciences
Laboratory, Ballistic Research Laboratories, Aberdeen
Proving Ground, Maryland

TECHNICAL SESSION X- TROPHY ROOM

Patrick J. Higgins
National Range Operations Directorate
White Sands Missile Range, New Mexico 88002

SAMPLE SIZES FOR IN-FLiGHT RELIABILITY DETERMINATION
E. F. South"Jorth~ Army t~issile Test and Evaluation
Directorate, White Sands Missile Range, New Mexico
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Friday AM

0800-0945 TECHNICAL SESSION X (Continued)

0940-100

1000-1100

DOVAP BEST ESTIMATE OF TRAJECTORY
R. H. Turner and W. S. Agee, National Range Operations
Directorate, White Sands Missile Range, New Mexico

DOVAP INSTRUMENTATION PLANNING
W. S. Agee and J. L. Meyer, National Range Operations
Directorate, White Sands Missile Range, New Mexico

PROVING PROGRAMS CORRECT
Elwood D. Baas, Army Missile Test and Evaluation
Directorate, White Sands Missile Range, New Mexico

PLASTIC FLOW IN A HOLLOW PRESSURIZED CYLINDER UNDER
GENERALIZED PLANE STRAIN CONDITIONS WITH REFERENCE
TO THE AUTOFRETTAGE PROCESS

A. S. Elder, Interior Ballistics Laboratory, Ballistic
Research Laboratories, Aberdeen Proving Ground, Maryland

BREAK

GENERAL SESSION III - ERICA ROOM

1145

SPEAKER:

TITLE:

CHAI R~1AN:

ADJOURN

Dr. Andrew J. Vitel~bi *
LINKAB IT
10453 Roselle Street
San Diego, California 92121

A Maximum Likelihood Decision Algorithm
with Multiple Applications ;n Digital
Communications

Commander
US Army Electronics Command
ATTN: A~lSEL -NL-H-2 (Dr. Wa lter Pressman)
Fort Monfilouth, New Jersey 07703

*DR. Cohen spoke in General Session III.
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ADDEilDUf'l

Due to unforseen conflicts at the time of publication of the original
program, the following changes have been made.

GENERAL SESSIO~ II - ERICA ROOM

SPEAKER:

TITLE:

Dr. Andrew J. Viterbi
LINKABIT
10453 Roselle Street
San Diego, California 92121

A Maximum Likelihood Decision Algorithm
with Multiple Applications in Digital
Communications

GG1ERAL SESSION II I - ERI CA RODil

SPEAKER:

TITLE:

Professor Donald S. Cohen
Division of tlathematics
California Institute of Technology
1201 E. California Boulevard
Pasadena, California 91109

Nonlinear Problems in Chemically Reacting
Diffusive Systems
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ON SPECTRALLY BOUNDED SIGNED GRAPHS*

A. J. Hoffman
IBM Thomas J.Watson Research Center

Yorktown Heights, New York 10598

ABSTRACT: This is a summary of part of the lecture.

We consider two questions concerying symmetric (0,1,-1) matrices
A with 0 diaronal and least eigenvalues \ (A): (1) can we determine
(roughly) 1\ (A) 1 by the largest 0ider of principal submatrices of certain
types? (2) can we approximate A-\ (A)1 by the grammian of a (0,1,-1)
matrix?

We shall consider the class of all signed graphs G(i.e., graphs
in which any pair of adjacent vertices are joined by a positive edge or
negative edge), and their associated adjacency matrices A = A(G) defined
by

j are non-adjacent vertices (thUS)
a.. "" 0 for all i)

. .11- db·· dJ are Jo~ne y a pos~t~ve e ge
j are joined by a negative edge

~f Alis an~ sy~ooetric matrix, we denote its eigenvalues in ascending order
by \ (A)~A (A)~ .... If G and H are signed graphs, we say GcH (G is an
induced sub graph of H) if A(G) is a principal submatrix of H.

The first question we consid1r, inlanalogy to [3] for ordinary
graphs, is whether the magnitude of A (G)=A (A(G» can be in anyway re­
lated to the size of certain induced subgraphs of G. To explain the ques­
tion (and the answer), we must first introduce some notation:

A large empty circle () will denote an independent set of t vertices.
A large circle with a + inside G)will denote a set of t vertices, every
pair of which are joined by a positive edge; a large circle with a - inside

will denote a set of t vertices, every pair of which is joined by a
negative edge. The symbol

+t:

means that a single vertex is joined by a positive edge to each of t vertices,
whose relation to each other is specified by? (All + all - or independent).
The meaning of

T:

should be clear.

* This work was supported (in part) by the Army Research Office under
contract number DAHC04-74-C-0007.
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Finally,

t: (j)
+

means that each of the left hand set of t vertices is joined by a positive
edge to each of the right hand set of t vertices; and the symbol

t: (J) (1). is similarly defined.

Consider now the following graphs:

(1) t: e

+
(2) t: 0

(3) t: 0

+ +
(4) t: ffi Et>

+
(5) t: ~ ~

+
(6) t: @ (f)

(7) t: (!) (f)

+ <:E>

(8) t: <SJ+
@

~

(9) t: ~-
e>

- ®

(10) t: <]-
e

2



We define, for each graph G, t(G) to be the smallest integer t
such that none of (1)-(10) is an induced subgraph of G.

One copy can readily prove that t(G) cannot be large if IA1(G)!
is of modest size. The reason is that, if H is anyone of (1)-(10),

1 1 f .\ (Ht)~-OO as t+oo. But H cG implies \ (H »\ (G). The point of 1nterest
t t =

is the converse. If t(G) is modest, so is l\l(G)1 in the followinglsense:
Theorem 1. Each of the two functions of signed graphs, t(G) and 1\ (G) I
is bounded by a function of the other.

We will not be specific about these functions (here and in the
theorems stated below), since the functions produced by the proofs (which
depend heavily on the use of Ramsey's theorem and its relatives [5]) are
enormous, and manifestly very far from being accurate. The points to be
emphasized are

(i) the functions are functions of one variable only, and in particular
do not depend on the number of vertices; and

(ii) it would be of interest to find better estimates of these functions,
closer to the truth.

The second question to be considered, inspired by [1], is the
following. Let G be a signed graph, then how can we represent the positive

semi-definite matrix A(G)_\l(G)I by a grammian KKT? In case Al (G)=-2,
the question has a nice geometric interpretation. The rows of K are
vectors of length 1:2, and the inner products of the rows of K are 0,1,-1.
Hence, the question is equivalent to finding ways of placing vectors in
Euclidean space so that any two make an angle of 0

0
,60

0
, or 1200

• From
the theory of root systems in Lie groups [2], one can infer that, if G
is connected, then there exists a (0,1,-1) K satisfying

(11)

with finitely many exceptions.

We tre led to conjecture that (11) might hold for other integral
values of A (G).

Conjecture 1. If \l(G) is integral and G is connected, then,
with finitely many exceptions there exists a (1,-1,0) matrix K such that
(11) holds.

It is iasy [6] to show that Conjecture 1 is true (with no ex­
ciptions) if A (G) "" -1. But conjecture 1 is false for al1 other integral
\ (G) = -3,-4, .... The countrr-examples are constructed inductively as
follows. Find a G such that \ (G) = -r, and (11) does not hold for that
G(this can be done for r = 2). Make up a graph H consisting of an enormous
number of copies of G (enormous depends on r), with all instances of vertex

3



i of G (for all i) joined by a positive edge. Then (11) will be false for
H, and A (H) = -(r+l). There will be an infinite number of such H, since
we can take an arbitrarily large number of copies of G to make H. Now the
induction continues, using only one of the H in place of G.

There is another reasonable conjecture (whether or not Al(G) is
an integer):

Conjecture 2. There exists a constant C such that, for each
signed graph G, there exists a (1,-1,0) matrix K with

Here, II I I stands for the usual operator norm.

given.
Conjecture 2 is also fIlse, by the following example. Assume C
Choose an integer m>C+z. Choose an integer n so that

;f 4m2 + 4n2 - 2n<1, and

n -
2

n -c 1-<-m+n+e 2

Now construct a graph G(p) as follows. Begin with a claw K 2' Denote
2' 2 1

the n vertices of the claw by l, ... ,n In addition, constragt 2m
(positive) cliques, each of size p, adjacent to 1; 2m positive cliques,
each of size ~' adjacent to 2; .•• ; 2m positive cliques, each of size p,
adj acent to n . . It can be shown that, for p large enough , (12) will be
false.

It turnslout, however, that a weak version of (12) is true, with
C depending on A. In fact, we have the following results, improving
[3], and using methods of [3] and [4].

Theorem 2. There exists a fixed function f(x) such that, for
every signed graph G, there exists a (+1,-1,0) matrix K such that

(13)

Further, the number of nonzero entries in each row of K is

(Here, [xl is the greatest integer at most x, abs G is the ordinary graph
obtained from G by making all edges positive).

Theorem 3. There exists a fixed function f(x) such that, for,
every signed graph G, there exists a (+1,-1,0) matrix K, every row of K
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containing min ([_\l(G)], [-\l(abs G)]) nonzero entries, so that (13) and

(14) II A(abs G) - \I(abs G)I - (abs K) (abs K)TI l~f(\l(A))

hold. (Here, abs K is obtained from K by replacing each -1 by +1).
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EFFECTS OF CONCENTRATED MASS AND THRUST DIRECTIONAL CONTROL
ON THE STABILITY OF FREE-FREE BEAMS

Julian J. Wu
Benet Weapons Laboratory

Watervliet Arsenal
Watervliet, New York 12189

ABSTRACT. The application of the finite element technique to non
self-adjoint, more-than-two-points boundary value problems was demonstrated
in a recent paper on missiles' stability analysis. Numerical results are
limited there. However, they have brought new understanding on the basic
stability behaviors of a free-free beam. The effect on such behaviors due
to a concentrated mass, modeling a piece of heavy machinery, was also
shown for some special cases.

The present paper is an extension of the previous work to include the
location as well as the amount of the concentrated mass as parameters.
Also included is an extensive study of the thrust directional control
feedback and its effect on the stability behavior's of free-free beams.

1. INTRODUCTION. The study of nonconservative stability of
structures without fixed supports* has turned out many surprises. Although
extremely similar to those with fixed supports in terms of the governing
equations, the so-called "free" structures present difficulties not only
in methods of solutions but in the interpretation of the solutions them­
selves. Many basic features of the problem were not sufficiently exploited
in the literature dealing with "free" structures [1-8]. As Solarz pointed
out in conjunction with a "free-free" beam problem [6], that the assumption
of a fixed end could remove some important features of the structural
motion as a "rigid body" with its vibrations. No adequate explanations were
given, however. And to the best of our information, none was found else·
where.

Let us ask a trivial question, for example: How many zero eigenvalues
are there associated with the vibration of a uniform, free-free beam?
The answer is two; and this can be easily shown by going through the
process of the separation of variables for partial differential equations.
However, in some of the most well-known text (i.e. [9, 10]), only one zero
eigenvalue was reported. ProbablY such an inaccuracy is of no consequence
for the cited example per se, except for the case of the same beam but now

*As an initial step, only beam structures are considered since they are the
simplest possible continuous systems.
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also subjected to an initial axial force.
of the correct number of zero eigenvalues
essential to the proper interpretation of
A numerical analysis of such problems and
reported by the present writer [11, 12].

Since then, the realization
of the first problem is

the stability data of the second.
some other points have already

The purpose of the present paper is to include some additional
computational results on the stability behavior of a free-free beam. In
particular, the effect due to the amount and location of a concentrated
mass and the amount and the sign of the directional control parameter are
analyzed.

2. PROBLEM FORMULATION. Let us consider the plane motion of a
uniform missile attached with a concentrated mass travelling under a
constant acceleration in the axial direction. The only forces are the
thrust P and the inertia force (pA~+M)a, where p = density of the material,
A = area of cross-section, ~ = length of the missile, M = amount of the
concentrated mass and a = axial acceleration.

Using the notion well described by Bolotin [13], we shall first discuss
the undisturbed form of equilibrium. The stability of such an equilibrium
will then be determined by an investigation of the disturbed motion, which
is the prime concern of our analysis.

The undisturbed state (Figure 1) is governed by three equations:

(la) r FX = 0

(lb) r Fy = 0

(Ie) L M ::I 0

Equations (1) states that the total force in X-direction, in V-direction and
the total moment in X-v plane are zero. From equation (la), we have

(2a) P = (pA~+M)a

or

(2b) a = p
PA!+fl

Thus the initial force acting on the cross-section of the beam is given
by
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(3)
{

(pAx)a = ~ (-p- ), 02.x<Xm
R, l+m

T(x) =

(pAx+M)a = (~ + m) (l~m)' xm~x<R,

where x is measured from the tip of

location of the concentrated mass.
because there is no force acting in
to the fact that the thrust and the
undisturbed state.

the beam, m =~ and Xm denotes the
pAR,

Equation (lb) is always satisfied
Y direction. So is equation (Ie) due
inertia force are colinear in the

The disturbed motion will be defined by a small lateral displacement
u(x,t), perpendicular to the undisturbed (rectilinear) axis (Figure 2). As
a means to manipulate the stability behavior, we assume that the direction
of P can be rotated through a small angle e about the tangent at the tail
end of the disturbed beams such that

where Ke is a nondimensional design constant, xe denotes the location of the
direction control sensor. The only limitation on Ke is that e be small so
that the linearized equations of disturbance are valid. These equations
consist of the following:

(Sa) D. E. EIu"" + [T(x)u'], + pAu + Mu(Xm) o(x-Ym) : 0

(Sb,c)

(Sd)

(Se)

B. C. u" (0) = 0, u'" (0) : 0

u" (R,) = 0

.EIu' , , (R,) = P e

= PKeu' (xe)

where E = Young's modulus, I = second moment of the cross-section and o(x) is
the Dirac function. T(x) is given by equation (3) and e, by (4). A prime
(') denotes a differentiation with respect to the spatial coordinate x and
a dot (.), a differentiation with respect to time t. Equations (5) can be
conveniently derived by integrating the three-dimensional equations for the
disturbed motion given in reference [14].

It will be convenient to write equations (S) in terms of dimensionless
quantities. Thus,

(6a) D.E.

(6b,c) B.C. u"(O) = 0, u" '(0) = 0
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(6d)

(6e)

u"(l):O

u'" (1) ::: KeQu' (xe) ::: 0

where f(x) in (6a) is given by

{

Qlx , 0 ~ x ~ Xm

(7) f(x)::: Qlx+mQl' ~ ~ x ~ 1

Ql ~ Qj(l+m) and Q :: Pi2/(EI).

The spatial variables are made dimensionless through a division by t.
The time t is jade dimensionless through a division by the constant
c :: (pA14/EI)1 2, which is in real time unit (seconds, for examplel In
equations (6), we have also assumed that the solution of u(x,t) is
exponential in time, i.e.,

(8) u(x,t) ::: u(x)eAt .

There should be no confusion from using the same letter u for two different
functions u(x,t) and u(x).

3. BASIS OF SOLUTIONS AND THE ADJOINT PROBLEM. Numerical solutions
to the equations of the disturbed motion (equations (6)) will be obtained
through the finite element technique - adjoint variational formulations.
The basis of this formulation is given here. Through integrations-by-parts,
it is straightforward to show that the adjoint problem of equations (6) and
the associated variational statement are given in equations (9) and (10)
respectively.

(9a)
D.E. v"" + [f(x)v']' + A2V + mA 2 v(Xm) o(x-xm)

- QKe vel) o'(x-xe) ::: 0

01 :: 0

v"'(l) + Q v'(l) == 0

V'I (1) + Qv(l) = 0

V I I '(0) = 0V"(O) = 0,(9b,c) B.C.

(9d)

(ge)

and

(lOa)

1
I == f

0
(lOb)

+ Qu'(l)ov(l) + QKeu'(xe)v(l)
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where vex) is the adjoint field variable and f(x) is given in Sq. (7).

It is worthwhile to note that the boundary conditions of Eqs. (6)
and (9) are all natural boundary conditions. Thus the variational statement
(10) is completely unconstrained. In other words, the coordinate functions
used for Rayleigh-Ritz approximation need not to satisfy any of the
boundary conditions [15].

We further note that Eq. (6) is not exactly a two point boundary value
problem unless xe : 1. It is clear that the boundary condition of the type
of Eq. (6e) in which xe • 1 does not present any difficulty when the
variational statement (10) is used for finite element solutions.

For the special case xe : I, the adjoint problem of Eqs. (9) can be
written in a slightly different form:

D.E.(lla)

(llb,c) B.C.

(lId)

(lle)

V""+[f(X)V']'+A2v+mA 2v(xm)O(X-Xm) : a

v"(O) : v"'(O) : 0

v"(l) + Q(l+Ke) vel) : 0

v"'(l) + Qv'(l) : 0

"

Once the variational statement has been established, it is a routine matter
to apply the finite element discretization. In conjunction with adjoint
variational statements, this procedure has also been well documented
[II, IS, 16, 17] and will not be repeated here.

4. STABILITY BEHAVIOR DUE TO DIRECTIONAL CONTROL. Prior to the
presentation of numerical results and discussions, it would be worthwhile
to recapitulate some basic definitions and concepts. As mentioned in
Section 2, the disturbance is assumed to be in the form of

(10) u(x,t) : u(x)eAt •

The eigenvalue A is a complex number in general. Thus we write

(11) A : AR + i AI

where i :~. Both AR and AI are real numbers. when AR is negative or
zero, the disturbance u(x,t) will decrease with time or remain finite, and
the structure is thus considered stable. When AR is nonzero and positive,
u(x,t) will grow with time and instability occurs. Div~rgence instability
is characterized by AI : 0 and flutter (or oscillatory) instability, by
AI +O. In the particular case when both AR and ~I are zero, the solution
represents a rigid body motion. According to the definition of stability
described in reference [13], it implies that small disturbance leads to
small deviation from the unidsturbed state. In case of small rigid body
motion, disturbance and deviation are the same. Therefore the rigid body
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translation and rotation associated with the small disturbance must be
considered stable modes.

In a continuous system, there are infinite number of eigenvalues
corresponding to various modes of vibrations. Since a large AI represents
a high frequency mode which is less likely to realize than the lower
frequency modes, only the lower end of the frequency spectrum is of physical
importance. In a finite element discretized system, depending on the number
of elements used, a finite number of eigenvalues are obtained to approximate
the actual eigenvalues of lowest magnitudes. For the data presented in
this paper, nine (9) elements were used. From our previous experience
on similar problems, the accuracy of these data should be within about one
percent (1.0% or less compared with the exact solutions [11]).

First let us consider the case without thrust directional control
(Ke =0). The numerical values of A of the four lowest magnitudes are
given in Table 1 for various values of Q and the curves of A vs. Q are
shown in Figure 3*. As shown in Table I, the first branch of eigenvalues
is zero throughout the range of Q. This solution corresponds to a rigid
body translation and is well known. The second branch has eluded many
investigators. At Q = 0, there is another zero eigenvalue which corresponds
to a (small) rigid body rotation. For Q > 0, however, A takes a (positive)
real value. This mode of disturbance must be a bending mode because it is
not a rigid body mode. Its magnitude will no longer remain small but grow
with time. This unstable bending mode of disturbed motion was first
realized by the present writer [11].

Again, the third and the fourth branches of eigenvalues are well known
[3, 4, 8]. Prior to Qc = 10.93TI2, the eigenvalues are pure imaginary,
indicating stable, osc1~latory motion. At QCR' these two branches coalesce
and, beyond which, the values of A become complex, indicating flutter
instability. Due to the unstable bending mode of the second branch, however,
this critical thrust QrR has lost its significance and we thus refer to it
as a pseudo-critical tnrust (Figure 3).

For a negative Ke (Ke =-0.1 for example), the first bending mode is
associated with a pOSItive real A, as shown in Figure 5, indicating
divergence instability. For a given positive Ka, however, a region of
stability exists between Q = 0 and Q = QcR' beyond which the structure
becomes unstable due to divergence. As reported in the previous investiga­
tions [3, 8], this critical thrust ~R was thought to be a constant for
all values of Ka. This is not conce1vable in the light of the present
analysis. Since QcR = 0 at Ka = 0 due to the unstable first bending mode,

*When A is either a purely real or a purely imaginary number, it appears
as a pair of the same absolute value but with opposite signs. Only the
positive ones are shown. In Figures 3, 5 and 6, we have plotted AI vs. Q
in the upper plane and (positive) AR vs. Q in the lower plane.
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we expect 9c to vary (continuously) from zero as Ys increases. Again,
this is sUbs~antiated by our numerical results. Ir. Figure 6, the detailed
variations of the eigenvalue of the first bending mode vs. the thrust
parameter Q is shown for various values of Ke from Ke = 0 up to 0.5. The
trend of QcR from zero as Ke increases is clearly observed. The ~ariation of
QcR vs. Ke is again plotted in Figure 7. This variation of QcR/n is shown
to be extremely sensitive in the range from 0.007 to 0.05. It approaches
rapidly and asymptotically to the value of 2.58 as Ke becomes greater than
1.0. This curve was substituted by a constant value of 2.60 in the previous
investigations.

Before we conclude this section, let us consider the special case of a
uniform missile under a constant thrust fixed in the direction of the
undisturbed axis. This problem was first considered by Silverberg* [1]
and is clearly a subcase of the present analysis with xe ::: 1.0 and Ke = -1. 0
(i.e., e = -VI (1)). By a purely analytical approach, Silverberg was able
to obtain the first non-zero Q at which the eigenvalue vanishes (Q =
2.60n2). Thus he concluded that Q = 2.60nZ is the buckling load. From the
present analysis as shown in Figure 4, however, even though Q = Z.SSn2 is
a point of vanishing eigenvalue, it cannot be considered a critical load
due to the fact that the structure is unstable prior to this load. This is
indicated by the real positive eigenvalue curve for Ke =-1.0 for
Q < 2.55nZ which is a region of divergence instability. Thus we have here
an example showing the stability nature of a structure cannot be determined
merely by seeking out the loading parameters of vanishing eigenvalues.

5. STABILITY BEHAVIOR DUE TO A CONCENTRATED MASS**. The effects on
the stability behavior of a uniform beam due to a concentrated mass are
shown in Figures 7 through 11.

For a tip mass of two percent of the total mass of the beam (xm ::: 0,
m = O.OZ), there is a region of stability between Ql = 2.7n2 and Q2 = 10.6nz.
For Q less than Ql, the beam is unstable due to divergence of the first
bending mode. For Q greater than Qz, flutter occurs due to the coalescence
of the second and the third bending modes (Figure 7). As the tip mass
increases (m =0.04 in Figure 8 and m = 0.06 in Figure 9), the region of
stability varies in such a manner that the values of Ql and Qz decrease
(Ql = 1.5nZ and QZ = 8.2nZ for m = 0.04; Ql = 0.9n2 and QZ = 6.8nZ for

In = 0.06).

It is also observed that, in Figures 8, and 9, that flutter occurs as
the first and the second bending mode coalesce whereas in Figure 7, it
occurs as the second and the third branches coalesce.

*Matsumoto and Mote credited the solution to Beal. But Beal himself
rightfully attributed it to Silverberg.

**rne data reported here supersedes some of those in Ref. [11] as an error
was found in the computer program used for previous calCUlations.
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Some indications of the effect due to the location of the concentrated
mass can be seen from Figures 9, 10 and 11 in which the stability curves
are calculated for a concentrated mass m = 0.06 placed at locations
Xm = 0, xm = 0.5 and Xm = 1.0 respectively. At locations xm = 0.5 and 1.0,
tne curves resembles tne ones with no concentrated mass (Figure 3), i.e.,
there is no region of stability as shown in Figure 10 and 11. However at
~ = 0, a region of stability can be attained within the operating thrust
range of Ql = 0.9~2 and Q2 = 6.8~2 (Figure 9).
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TABLE 1. NUMERICAL VALUES OF THE FOUR LOWEST EIGENVALUES FOR AUNIFORM FRE
FREE BEAM UNDER ACONSTANT THRUST WITHOUT DIRECTIONAL CONTROL

Q!rr l o. 1. 2. 3. 4.

.A4 61.70 59.78 57.79 55.69 53J47

)..3 22.37 20.95 19.49 17.98 16.45

.A.2 O. (0.60) (0.78) (0.88) (1. 02)

)..1 O. O. O. O. O.

o/1TL 5. 6. 7. 8. 9.

A4 51.11 48.56 45.76 42.62 38.90

.A3 14.94 13.57 12.50 12.08 12.70

"2 (1.29) (1. 82) (2.64) (3.69) (4.72)

Al O. O. O. O. O.
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THE STANDARD LINEAR MODEL IN THE STABILITY
AND MASS OPTIMIZATION OF NONCONSERVATIVE EULER BEAMS

Charles R. Thomas
Benet Weapons Laboratory

Watervliet Arsenal
Watervliet, New York 12189

ABSTRACT. A dimensionless stability problem together with its adjoint
problem has been formulated for nonconservative, cantilevered Euler beams
with linear external damping and internal damping according to the
standard linear model. Mass optimization is considered for a beam with
a linear distributed tangential load acting along the centerline. Graphi­
cal optimization plots are shown and utilized as initial guesses in a
Rosenbrock optimization routine which indicates mass reductions in the
range of 20% to in excess of 30% are possible.

1. INTRODUCTION. The stability problem was formulated for non­
conservative, cantilevered Euler beams with linear external damping and
internal damping according to the standard linear model. A convenient
dimensionless form of the original equations was introduced and an adjoint
system of equations was derived. These equations were then utilized in
developing an adjoint variational principle which yielded a characteristic
equation for critical flutter load after a proper application of a
generalized Ritz procedure. Specific numerical results are then given for
Hauger1s problem, that is for a beam with a linear distributed tangential
load acting along with the centerline of the beam.

The stability problem shows several most interesting results with
the introduction of the additional internal damping parameter for the
standard linear model as opposed to the single internal damping parameter
of the Kelvin-Voigt model. Several interesting cross-plots of flutter
load versus both internal and external damping parameters show a
considerable variation of flutter load with damping parameters and the
ability to determine a maximum flutter load for the case of anyone
damping parameter fixed with the ability of allowing the other two damping
parameters to vary until the maximum is achieved.

The basic optimization procedure was to fix or choose a desired flutter
load and then numerically determine the optimum design which minimizes the
beam mass. A special class of generalized parabola type boundary curves
with beam thickness being a function of axial displacement was applied to
Hauger1s problem for a beam of rectangular cross-section. Important
constraints considered are that the Euler Beam Theory is only valid for a
thickness to length ratio smaller than 1/10 th and that practically the
free end of the beam must be of finite thickness. Graphical results showed
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(5)

that considerable weight reductions were possible and yielded excellent
starting values for the optimization procedure. A Rosenbrock optimization
routine with a minimum tip thickness constraint imposed was then applied
to several beams with different values of internal and external damping
parameters with mass reductions in the range of 20% to in excess of 30%
resulting.

2. THE EQUATION OF MOTION. The equation of motion for the vibration
of Euler beams with both internal and external damping was derived in
reference [lJ. The purpose of this section will be to develop similar
equations which now include stability terms.

Following Brunelle [2J, displacements are assumed of the form

(1)
v = z w(y,t)

w = wo(Y) + w(y,t),

the strain-displacement relations are

E = Z ol/J
y oy

(2) £ = 0Z

- 1 [ow + wJ
Eyz - 2 oy ,

and the stress-strain law becomes

(3) ~ a2wa = Ez =-Ez-y oy ay2

if one sets Eyz = 0 to allow for the equation

(4) W= - ow/oy.

Thus. the averaged moment equation becomes

a2wM= - f z cry dA* = E I ---
A* dy2

and consequently from (3) stress may be expressed as

(6) cry = _ ~z ,
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where I is the second moment of inertia about the neutral axis.

Taking a deformed beam element with sides perpendicular to the
deflected centerline [3], Figure 1, a sum of vertical forces and moments
yields the equations

(7)

(8)

ClQ (l-
q - mw - FD1 - FD2 + -- + N ~ = 0

Cly y aye.

where Qis the shear resultant. Ny' is the in-plane load. q is a distributed
beam load, m is the beam mass, ana the FOi' i = 1.2, are external dampings.
From Baker. Wool am, and Yound [1] it is known that

(9 )

(10)

FOl
Cl IClwl ClW= --
R, at at

C2 ClWF02 :: -;- at

(11)

(13)

with the details of Cl and C2 being amply discussed in that reference.

Applying equations (9) and (10) to equation (7),

C C 2-
_ .. 1 Iaw I aw _ -1.. ClW + illl + N a w ::: O.

q mw R, at at ~ at ay y~

Now, consider internal viscous damping according to the standard
1inear model

(12) (1 + C a/at)ay = (E + E* Cl/at)Ey

where E is Young's modulus and C and E* are viscoelastic material constants.
Combining equations (2) and (4) results in

a2w
Ey = - z ay2

and a direct substitution of this equation into equation (12) yields

(14 ) (1 + C .L)a = _ z(E + E* .L) a2w •
at y at ay2
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aQ
Q + ay dy

aM
M + - dy

ay

Ny

aw
e = ay

aw a2w
af = - + dy

ay ay2

Figure 1. THE BEAM ELEMENT
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(15 )

Multiplying (14) by z and integrating over the cross-sectional beam area
results in

(1 + C ~ t)M= (E + E* .L) I a2~ •
at ay

Now, assuming that C is independent of y, taking a partial derivative with
respect to y of equation (15) results in

(16) (1 + CL) aM =L [(E + E* L)1 a2w]
at 3y 3y at ay2

and multiplying equation (8) by (l + C a()/at) yields

(17 )

Hence,

{l + c L)Q = - (1 + C 1...) aM
at at ay·

(lS)

(20)

2
{l + C !-)Q = - !- [(E+E* a )1 a w

at ay R ay2

and a first derivative of this equation is

(19) (l + C a ) E.Q = - -.i [( E + E* L) I a2
w].

at ay ay2 at ay2

Multiplying equation (11) by (l + C a{)/at)

. C
{l+C ~)q - {l+C Lt)m tv - (l+C L) _1 I~I awat a at j, 0 t. at

_ (l+C a ) ~ aw + (l+C ~) .£.Q. + U+c L)N a
2w= 0

'fi 9" ,.at at ay at y ay2

and a direct substitution of equation (19) into equation (20) results in
the non-linear displacement equation of motion

31



(2l)

a
2

[{E+E* ~)I a2wJ _ {l+C ~)N a
2
w

ay2 at ay2 at y ay2

C
_ (l+C L)q + (l+C L) _1 lawl~w

at at t at at
C

+ (l+C 2-) -.1. aw + (l+C L)m w= O.
at i at at

Equation (21) may be linearized by setting

(22) Iaw I aw = 0
at at

and hence the linear form of the equation is

(23)

2 2 ~
_a_ [(E+E*L)I a WJ _ (l+C 2-)Ny a w
ay2 at ay2 at ay2

C
- (l+C L)q + (l+C L) -.1. aw + (l+C L)m w= O.

at at i at at

(24)

In the case of elastic stability, a compressive load is applied and
the substitution

N =- p
Y

is made. Also, since the material parameter C has been assumed independent
of y it is now also assumed for consistency that the elastic and material
parameters E and E* are also independent of y.

The corresponding boundary conditions for conservative flutter loads
are

or w=O on x=O,i(25)

and

2 3
[E ~ (I ~) + E* 2- (I a W ) _ N aw_

ay ay~ ay ay2at y ay

a2w- C Ny = 0ayat
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(26) on y=O,t.

awor - = 0ay

Special consideration is necessary for non~conservative flutter loads;
for example. the boundary conditions for non-conservative flutter loads
of cantilever Euler beams of length t are for the clamped end

(27) w = 0, aw =0
oy

at y = 0

and for the free end

at y = 9.,.(28)

2
(E+E* L) L (I a w) = 0,

at 'Oy ay2

2
(E+E* ~) I a w = 0

at ay2

3. THE ADJOINT VARIATIONAL PRINCIPLE. The adjoint to equation (23)
will now be determined. Equation (23) in operator notation with Wo = 0 is

(29) L[w] = - q - C~

where

2 2 2 a3wL[w] - - E _a_ [I a w] - E*~ [I ]
'Oy2 ay2 ay ay2at

2 a3w C2 aw
+ N a w + C N ---y ay2 y 'Oy2at 9., at

C C2 a2w 3
(30) - [- + m] -- C mU .

9., at2 at3

Now, the adjoint equation
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(31) L*[v] = - q - C~

is sought.

In general, the Lagrange indentity

(32)
d

v L[w] - wL*[v] = dy P(w,v),

(35)

where P(w,v) is the bilinear concomitant, can be integrated to yield the
Green's formula

~ ~

(33) f (v L[w] - w L*[v] )dy = P(w , v) I .
o 0

Notice from equations (29) and (31) that their right sides would cancel
in applying equation (33), hence one may simply begin with the homogeneous
form of operator (30),

(34) L[w] = O.

A formal solution for the adjoint to operator (3) is obtained by starting
with the equation

t1 ~
f f v L[w]dy dt = 0
to 0

and manipulating by means of integration by parts towards the Green's
formula (33). Adirect substitution of operator (30) into equation (35)
results in the equation

dy dt = 0;

(36)
2 3

+ N a w+ C N a w
y ay2 y ay2at
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omitting the details of numerous integrations by parts, the eventual
result is

dy dt =

(37)

- w

2 2
[E .L (I a w)vJ _- E (I a W) 2.Y-

ay ay2 ay2 ay

2 2
+ E( I .L'L) aw - E .L (I U) w

ay2 ay ay ay2

+ E* 1- (I a3
w)v _ E* (I a3

w ) £y
ay ay2at ay2at ay

dt

2
-CvN aw

y ayat
o
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R,

+ Lo
C C2 av a2w

(R, + m) at w + C m y -2
at

dy;

where the variables E*, I, Ny' C, C2, and mwere assumed independent of
time to arrive at this state.

Now, without loss of generality the usual restrictions that

1'tL
(38) w= at =v = 0 at t = to' t

l

are imposed on equation (37) with the result being that

tl

(39)

av aw a2y
-Cm--+Cm-w

at at at2

dy=O.

Substituting (39) into equation (37) and comparing the result with Green's
formula (33) results in the formula adjoint being
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(40)

and the bilinear concomitant being

(41 )

2 2
E 2.... (I U)v - E I~~

oy oy2 oy2 ay

+ E I 02v aw _ E.L (I 02V ) w
oy2 oy oy oy2

+ E* .L (I a
3
w)V _ E*I 03w av

oy oy20t ay2at oy

2 2 2
+ E* I ~ l..!L _ E* .L (I 0 w) oW

oy2 ayot oy oy2 at

oW 0
- v Ny at + oy (Ny v)w

o
The original and adjoint boundary conditions are now determined by

settfng the bilinear concomitant, equation (41), equal to zero. The
problem here is in deciding which terms to group out as the original
boundary conditions and consequently which terms will group out as the
adjoint boundary conditions -- a simple inspection of equation (41)
indicates that several choices are possible.

In the case of the non-conservative flutter loads of cantilever Euler
beams, the original boundary conditions were postulated in the form of
equations (27) and (28). Based upon equation (28), the expressions
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(42)

2 3 ~
[E a (I a w) + E* l- (I a W )]vl =a

ay ay2 ay ay2at 0

2 3 ~
[E I 2J!. + E*I a w ] !Y. I ;: 0

ay2 ay2at ay 0

may be directly isolated from the bilinear concomitant (41) with a
corresponding reduction to

(43)

~

P(w,v) I =
o

2 2 ~
E I U aw - E !.. (I a V)w

ay2 ay ay 3Y2
222

+ E*I U.2.2L _ E*!.. (I £.....Y..) aw
ay2 ayat ay ay2 at

aw a ( )- v Ny at + ay Ny v w

2
- C v N .£...!L + C!- (v N ) aw

Y ayat ay y at
a

2 2
E1 U aw - E .L (I U)w

ay2 ay ay ay2

Now, equation (27) dictates that the remaining terms in (43) group out as
products of either wor aw/ay; if this is to occur, the terms with time
derivatives of wmust be put into a different form. To accomplish this.
equation (43) is integrated with respect to time to yield

~

(44)

t l ~ t a2v a2 2 dt
f P(w.v) I dt=f 1 + E*I - -.!L. - E* L(I U) aw
to 0 to ay2 ayat ay ay2 at

_ N aw + a (N )v y at ay y v w

2
- C v Ny LYL. + C!.. (v Ny) aw

ayat ay at 0

and those terms with time derivatives of ware integrated by parts with
equation (38) appropriately applied to result in
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(45)
tl R.

f P(w,v)1 dt =
to 0

rEI a2~ _ E*I a~v _ v Ny + C Ny ~Vt] awr ay ay at 0 ay

+[- Et-(I a
2
v2)+E*.L(I a~v)+ L(NyV)-C L(v Ny)] w

y ay ay ay at ay atay

From equation (45), it is clear that one can set
o

dt.

(46)

2 3 t
[EI U _ E*I a v - v N + C N ~J aw I = 0

ay2 ay2at y y at ay 0

2 3 R.
[-E 1..(1 4)+E* L (I a v )+ L(N v)-c L(v N )]wl = 0

ay ay£ ay ay2at ay y atay y 0

and as a result of this the bilinear concomitant is zero

t
(47) P(w,v) I = 0

o
such that the formal adjoint (40) may now properly just be termed the
adjoint. Since equations (27) and (28) are the original boundary conditions,
their satisfaction in equations (42) and (46) leaves the equations

(48)

and

v = 0, !'!. = 0
ay on y = 0

2 3
[EI U - E*I a v - v N + C N aVJ = 0

ay2 ay2at y y at

2 3
[+ E .L (I a V) - E*.L (I a v ) - .L (N v) +

ay ay2 ay ay2at ay y

2
+ .f.-L (v N J = 0Hay y

(49) on y = Q,

for the adjoint boundary conditions.
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4. THE DIMENSIONLESS PROBLEM. At this point the original and adjoint
differential equations together with their respective boundary conditions
are known. Before proceeding on to the adjoint variational principle,
it would be advantageous to develop a dimensionless formulation of the
problem at hand and to discuss possible types of flutter load.

To begin with, the dimensionless variables

(50)
x = y/R­

T = t/a

(51)

(52)

(54)

are taken and it is assumed that the beam area and moment of inertia may
take the form

rv
I(x) = IOI(x)

'V

A(x) = AOA (x) .

Also. the compressive load N = - p. equation (24), is introduced into the
equations at this point. Fot general convenience. the following dimension­
less variables are applied throughout the development

rv
a(x) = I(x)

y = E*/Ea

p(x) = P(X)R-2/EIO
~ = C/o
- 3
q =C2R- /EIOa

rv
a(x) = p AOR-4 A(x)/EIOa2.

Thus. a direct application of equations (50-52) to equations (27). (28).
(29). and (30) together with a bit of manipulation and the assumption that

(53) q = 0

results in the dimensionless original differential equation

2 2232
~ [a(x) a w

2
] + y L

2
[a(x) a w ] + p(x) U

ax~ ax ax ax2aT ax2

~3w 2 3
+ ~p(x) Q + q aw + [~q+s(x)] U + ~s(x) a w= 0

aX2aT aT aT2 aT3

together with the non-conservative dimensionless original boundary conditions
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(55)

and

w= 0,
aw
-= a
ax

on x=O

(56)

a a2w
[1 + y -]a(x) ~ = a

aT ax2

a a a2
w

[1 + Y -] - [a(x) -J = 0
at" ax ax2

on x=l

for a cantilevered Euler beam. Similarly, equations (50-53) applied to
equations (31), (40), (48), and (49) result in the dimensionless adjoint
differential equation

(57)

a2 a2v a2 a3v a2

---2 [a(x) -;2] - y -2 [a(x) 2] + -2 [p(x)v]
ax ax ax ax aT ax

a3 av a2v a3v
- ~ [p(x)v] - q - + [~q + l3(x)] - - ~B(x) - = a

aX2aT at" at"2 aT3

and the dimensionless adjoint boundary conditions

(58 )

and

v = o.
av
-= a
ax

on x=O

a2v a3v av
a(x) ---2 - ya(x) 2 + p(x)v - ~p(x) - = a

ax ax aT aT

(59)
a2

- ~ ---- [p(x)v] = a
aXaT

41
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Some examples of the loading P(x) for several distinct flutter problems
are

(60) P(x) = P

for Beck's problem [4] which assumes a concentrated load is applied tangent
to the free end,

(61) P(x) = q(l-x)

for the Leipholz problem [5] which assumes that a uniformly distributed load
acts tangentially along the centerline of the beam, and

(62) 1 2p(x) = - q (l-x)2 a

(63)

for Hauger's problem [6] which assumes that a linear distributed tangential
load acts along the centerline of the beam. These are merely examples of
what can be handled, the analysis can be applied to any problem which satis­
fies equation (54), with the p(x) now being specified for this problem, and
the corresponding boundary conditions (55) and (56).

5. THE ADJOINT VARIATIONAL FORMULATION. Based upon a suggestion by
Dr. Gary Anderson, considerable simplification in developing the varia­
tional principle is possible if solutions of the form

W(X,T) = W(x)eAT
...

V(X,T) = V(x)e- AT

are immediately assumed. Adirect application of solution (63) to the
original problem (54-56) results in the differential equation

a2 a2w a2w
---2 [a(x)[l+AY] -:2] + [l+A~]p(x) ---2
ax ax ax

(64) + [Aq(l+A~) + A2S(X) [l+A~]JW = 0

and the boundary conditions

(65)

and

W = 0,
aw
- = 0,
ax

on x=o
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(66)

a2w
(l+YA)a(x) --- = 0

ax2

a a2w
(1 +YA) - [a(x):2] = 0

ax ax
on x=l.

Likewise, applying solution (63) to the adjoint problem (57-59) results in
the differential equation

a2 a2v a2 r
~2 [(1 +YA)a(x) 2] +~2 [(l+A~)p(x)V]
ax ax ax

(67) + [Aq(l+A;) + A2S(X) [l+;A]]V = 0

and the boundary conditions

(68) v = 0,
av
-= 0
ax

on x=O

and

(69)

a2v
(l+YA)a(x) ---2 + (l+A;)p(x)V = 0

ax

a a2v a
- [(l+Ay)a(x) ---2] + - [(l+A~)p(x)V] = 0
ax ax ax

on x=l.

Now, a variational principle based upon equations (64-69) will be
developed in terms of potential energy V* such that the ultimate result
is

(70) *oV = O.

To begin with, equation (64) is multiplied by 8V and integrated over x

(71)

1
Ia

a2 a2w
--- [(1 +Ay)a(x) -]oV
ax2 ax2

a2w
+ [l+A~]p(x) ---2 8V

ax

+ [(l+A~)Aq + (l+As)A2s(x)]W8V
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After an application of integration by parts and a bit of manipulation,
equation (71) may be put into the form

1 a2wa2v
8 f [l+Ay)a(x) -2 -2 dx

o ax ax

aw av ap(x) aw
- [p(x) --- - + --- VJ (l+A~)

ax ax ax ax

+ [(l+A~)Aq + (1+A~)A2B(x)JWV

+
a a2w aw

( - [(l+As)a(x) -;2] + (l+A;) - p(x))8V
ax ax ax

a a2v a
+ (- [(l+Ay)a(x) -;2] + --- [(l+A~)p(x)VJ)oW

ax ax ax

1

('::

on x=o

a2w aw
(72 ) - [(l+Ay)a(x) -2J 8(-) = o.

ax ax

a2v av
- [(l+Ay)a(x) -;2J 0(-)

ax ax
0

In looking at equation (72), it is clear from equations (65-66) and (68-69)
that the following boundary conditions are immediately satisfied

av aw
V=W=-=-=o

ax ax

a2w
(73) (l+AY)CI(x) -2 = 0 on x=l

ax
a a2v 'a

--- [(l+Ay)a(x) ---] + --- [(l+A~)p(x)V]=O on x=l
ax ax2 ax

a a2w
(l+AY) --- [a(x) -] = 0 on x=l

ax ax2
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and that the boundary condition

a2v
(74) (l+YX)o.(x) -2 + (l+A.qp(x)V = 0

ax
on x=l

must still be satisfied. If it is now stipulated that boundary condition
(74) must also be satisfied, equation (72) can be put into the form

1 aW a
o J - (l+A~) ---- [p(x)V]

o ax ax

oW
(75) + o[(l+~~)p(x) -- V] = o.

ax x=l

dx

To arrive at the variational principle (70), it is now assumed that the
potential energy may be broken up as

* * *(76) V = V
l

+ V2,

where

(77)

(78)

* 1
1

Vl =2" f Vl dx
0

*
1

V = J V
2

o(x-l)dx
2 0

and equation (78) reflects the introduction of the Dirac Delta function
o(x-a) with

a
(79) J ¢(x) o(x-a }dx = ¢( a ) /2

U

being one of its most useful integral properties. Thus, applying equations
(76-78) to a comparison of equations (70) and (75) results in the potentials
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(80)

(8l )

aw a
- (l+A~) -- [p{x)V]

ax ax

+ [{l+A;)Aq + {1+A~)A2e{x)]wv

aw
v = (l+A~)p{x) - V.
2 ax

The calculus of variations will now be used to determine the Euler­
Lagrange equations associated with equation (70). Clearly, the functional
dependencies of Vl and V2 are

(82)

Vl = Vl (x
av aw a2v a2w

v, W, -, -, -2' -2)
ax ax ax ax

V2 = V2 (x : V, aw/ax)

and it may be postulated that

1 av aw a2v a2w
I (V ,W) = ( V1 (x : V, W, -, -, -2' -2)dx

b ax ax ax ax

(83)

such that

1 oW
+ f V2{x : V, -)8(X-l)dx

o ax

(85)

(84) a! = O.

A back substitution of equation (84) into equation (83), integration by parts,
and an application of the first lemma of the calculus of variations leads to
the Euler-Lagrange equations

2a aVl a aVl aVl
-(-)--{-)+~ = 0
ax2 avxx ax avx av

a2 aVl a aV l aVl
-(-)--{-)+- = 0
ax2 awxx ax awx aw
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and the boundary conditions

a aV1 aV1
- -(-) +- = 0

ax avxx avx

a aV1 aV1 aV2
- - (-) +-+- = 0

ax avxx avx av

aV1
0=

avxx

a av, aV1- -(-) +- = 0
ax awxx awx

aV1
= 0

awxx

(86)
aV1 aV1

0--+- =
awxx awx

or V=O on x=O

or v=o on x=l

or Vx=O on x=O,l

or w=o on x=O,l

or Wx=O on x=O

or Wx=O on x=l.

A direct substitution of equations (80-81) into equations (85-86) results in
an exact reformulation of the original problem (64-66) as well as the adjoint
problem (67-69l. This verifies that the variational principle (70) is indeed
correct when V is defined by equations (76-78) and (80-81).

6. THE GENERALIZED RITZ APPROXIMATION. Following Anderson [7J, a natura'
extension of the Ritz method in its classical form is applied to the current
adjoint boundary value problem. The approximation is made in terms of a finite
series expansion of the product of prespecified coordinate functions. The
approximation will now be made as the two series

N
(87) V(x) ~ L bn Vn(x)

n=l

where Wn(x) and Vn(x) are the coordinate functions which must be prescribed and
an and bn are constants. Thus, the general procedure involved will be to select
Wn(x) and Vn(x) subject to certain boundary constraints and then to use t~e

variational principle to find a characteristic equation for flutter load. In
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on x=l(88)

general, it is believed that satisfaction of all or most of the boundary
constraints tends to minimize convergence time [7J. However, if those
terms in the natural boundary conditions which contain derivatives of
odd order of time [7] are deleted, then the coordinate functions which
were previously developed for the undamped beam may be employed directly
in the current problem. Since the geometric boundary conditions remain
unchanged, no extra consideration is warranted in this case. Thus, going
back to natural boundary conditions (56) and (59) with the assumption
that odd order derivatives in time are deleted and tracing through
ensuing developments results in the boundary conditions

a2w
~(x) ---2 = 0

ax

a a2w
-- [a(x) ---J = 0
ax ax2

and

on x=l(89)

a2v
~(x) ---2 + p(x)v = 0

ax

a a2v a
-- [a(x) ---] + -- [p(x)vJ = 0
ax ax2 ax

which are now utilized in place of boundary conditions (66) and (69).

Following reference [8], it is the current intention to choose the
Wn(y) and Vn(y) as general polynomials. The polynomials will be chosen
such that there is one term for each boundary condition plus one, the
highest power is one more than the highest order derivative, and the
n the order polynomial is of the form

(90) x(n-l) (al + .•• + as x4).

Hence, the assumed forms of the coordinate functions are
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Now, the constants in coordinate functions (91) and (92) are evaluated
by substitution of these equations into boundary constraints (6S), (88) and
(68), (89), respectively, which they must identically satisfy. Thus, a
direct substitution of equation (91) into the boundary conditions results
in the four constants

al = 0, a2 = 0

(93) a3 = [(n+3){n+2)2{n+l)a{1)]aS/d

a4 = [2{n+3){n+2){n+l)na{1)]aS/d

where the denominator term d is defined as

(94) d = (n+2){n+l )2na{l).

Since the as in equations (93) is really just an arbitrary constant if traced
through to lts origin in equation (91), substantial simplification is realized
by choosing it as

(95) a5 = d/[{n+2){n+3)a{1)].

A direct back-substitution of equations (93-95) into equation (91) results in
the final form of the coordinate function being

(96) Wn{x) =x{n+l)[{n+3){n+2) - 2{n+3)n x + (n+l)nx2].

Similarly, a direct substitution of equation (92) into the boundary conditions
results in the four constants

(9'7) - [(n+3){n+2){n+l)a2{1) + 2n{n+2)a{1)p{1) J ~
b3 - bS/a

- 2(n+2)a{1)p' (l) + 2(n+2)a' (l)p{l) + p2{1)

[

-2{n+3){n+2){n+l)n a2(1) - 4n{n+l)a{1)p{1) J ~
b = b /a
4 +2{2n+3)a{1)p'{1)-2{2n+3)a'{1)p{1)-2p2{1) 5

rv
where the denominator term d is defined as

~ = (n+2)(n+l)2n a2{1) + 2{n+l)(n-l)a(1)p(1)

(98) - 2{n+l)a(l)p' (1) + 2(n+l )a' (l)p(l) + p2{l)

and the prime notation indicates derivatives with respect to coordinate x,
i .e• '= d/dx •
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Now, equations (97) reduce equation (92) to

(99) Vn{x) = x{n+l)[b3 + b4x + b5x2]

which upon letting bS = ~ results in

(100)

where

an = (n+3){n+2)2{n+l)a2{1) + 2n{n+2)a{1)p{1) - 2{n+2)a{1)p'{1)

(101) + 2{n+2)a ' (l)p{l) + p2{l)

en = (n+3){n+2){n+l)na2{l) + 2n{n+l)a{1 )p{l) - (2n+3)a{l)p' (l)

(102) + (2n+3)a ' (l)p{l) + p2(1)

Yn = (n+2){n+l)2n a2{l) + 2{n+l){n-l)a{1)p{l) - 2{n+l)a{1)p'{l)

(103) + 2{n+l)a ' (l)p{l) + p2{l).

With the coordinate functions W(x) and Vn{x) now determined, it remains
to solve for the flutter load p{x). nThe approximate solutions (87) are now
back substituted into the potential energy expression given by equations (76­
81) to yield

* 1V --
2

k-K
(1+AY) I

k=l

n=N 1 I I I I

I G k J a{x)Wk {xlV (x)dx
n=l non

k~K n=N 1 I I

-(1+~~) L L Gnk f p{x)Wk{x)Vn{x)dx
k='1 n=l 0

k=K n=N 1
-(l+A~) L L Gnk f p'(x)Wk(x)Vn(x)dx

k=l n~l a
k=K n=N 1

+{l+A~)Aq L L Gnk f Wk{x)Vn{X)dx
k=l n=l 0

k=K n=N 1
+{1+A~)A2 L I Gnk f ~(x)Wk(x)Vn{x)dx

k=l n=l 0
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(104 )

where

Now, a consideration of equation (104) shows that the following definitions
are possible

1
(106) Ank =6 S(x)Wk(x)Vn(x)dx

1
(107) Bnk = J a(x)Wkl(x)V~I(x)dX

o

1
(108) Cnk =6 P(x)Wk(x)V~(x)dx

1
(109) Dnk =J p'(x)Wk(x)Vn(x)dx

o

and hence equation (104) may be rewritten as

v* =l
2

k=K n=N k=K n=N
(l+Ay) l l GntBnk-{l+A~) l L GnkCnkk=l n=l k=l n=l

k=K n=N k=K n=N
-(l+A~) L LGnkDnk+{l+A~)Aq L L GnkEnk

1e=1 n=l k=l n=l

k=K n=N
+OtAJ;)A2 L L GnkAnk

k=l n=l
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(1l2)

1 k=K n=N
+ - (l+A~) L L GnkFnk'

2 k=l n=l

b =0n

n=N
I

n=l

(115 )

Thus, the variational principle (70) is now applied to equation (112) with
the functional dependence of V* being

(113) V*; V*(ak' bn)

and the resulting Euler-Lagrange equations being

av* av*
- = 0, - = o.

(114) 'Oak abn

Applying equations (114) to equation (112) and recalling from equation (105)
that Gnk = akbn results in the conditions

{l+Ay)Bnk - (l+A~)Cnk

-(l+A~)Dnk + {l+A~)Aq Enk

+(1+A~)A2Ank + (l+A~)Fnk

(116 )

k=K
L

k=l

(l+AY)Bnk - (l+A~) Cnk

-{l+A~)Dnk + {l+A~)Aq Enk
+(1+A~)A2 Ank + (l+A~) Fnk

Clearly, equations (115) and (116) are equivalent and hence it is
permissible from this point on to consider only one of these equations.
Hence, working only with equation (115) it is possible to obtain the
critical flutter load by setting the determinant of the Kequations thus
represented equal to zero with the resulting characteristic equation
being

{~ Ank )\3 + (Ank + ~q Enk )\2

DET +(y Bnk - ~ Cnk - ~ Dnk + q Enk + ~ Fnk)\ = O.

(117) +(Bnk - Cnk - Dnk + Fnk )

Now, equation (117) may be solved numerically on the digital computer for
critical flutter load once the necessary material and geometric properties
are specified.
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7. THE OPTIMIZATION OF HAUGER'S PROBLEM. Hauger's problem [6J will
now be optimized within the bounds of a special class of generalized
parabola type boundary curves. The beam thickness will be expressed
functionally in terms of length axis displacement, but the beam width b
will be held constant and thus any cut perpendicular to the length axis
will have a rectangular cross-section.

A generalized parabola type curve, Figure 2, is passed through the
point z=a at the clamped end y=O and the point z=c at the free end y=~.

The generalized form of this curve is chosen as

(118) z - c = (const.}(~_y}n

and the constant is now evaluated such that at y=O, z=a with the result
being

(119 )
(a-c)

const. =

z

(O.a)

(0.0)

(R..e)
y

(R..O)

Figure 2. The Generalized Parabolic Type
B01mdary Curve
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(120)

Representing the beam half-thickness as
(118) and (119)

[
9..-y]n

h(y) = c + (a-c) ---;: •

h(y) such that h(y)=z, then from

The basic optimization problem to be considered is that of choosing or fixing
the desired flutter load, in this case qo' and then determining the optimum
design h(y) which minimizes the beam mass.

The dimensionless variables (50) and (52) are introduced and following
equations (51) the second moment of inertia is expressed as

(121) I(x) = IoS(x)

and in a similar vain the area can be written as

(122) A(x) = Ao r(x).

Now, a suitable reference dimension will be introduced by using length
as a characteristic beam reference and the dimensionless beam coordinates

(123 ) ex = c/9.., 11 = a/9..

are introduced and applied to equation (120) with the result being

(124) h(x) = 9..(a + (11-ex)(l-x)n].

The basic definition of second moment of inertia is evaluated for a constant
beam width b and thickness 2h(x) to yield

(125 )

which upon an introduction of equation (124) becomes

letting

(127) I = ~b 9..3
o 3

and comparing equation (126) with equation (121) results in the definition

(128) S(x) = [a + (11-ex)(1-x)n]3.
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A similar look at the cross-sectional area

(129) A(x) = 2b h(x)

with the definition

(130) Ao = 2 b £

being made results in equation (122) yielding the definition

(131) r(x) = [a + (~-a)(l-x)n].

A comparison of equations (128) and (131) shows them to be functionally
similar and if the function

(132) f(x) = [a + (~-a)(l-x)n]

is now defined, then

(133) r(x) = f(x)

(134) S(x) = f 3(x).

The basic optimization problem will be to minimize the beam mass while
holding the flutter load constant, which can be expressed as

1
(135) J pA(x)dx = minimum.

a
Equation (135) is readily expressed as

1 1
(136) f pA(x)dx = 2p£2b f f(x)dx

o a
and since p, £, and b are essentially fixed variables the problem reduces to
minimizing the integral

1
(137) J f(x)dx = minimum

o
or hence minimizing

1
(138) f f(x)dx = a + [(~-a)/(n+l)].

a
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8. THE APPROXIMATE SOLUTION. A first approximation to the current
problem will be made by considering only the first several terms of the
generalized Ritz solution for the original and the adjoint problems.

From equations (50), (52), and (62) it is clear that

(139) p{x) = Q{1-x)2

where

(14l )

(140)
qo £4

Q =
2 E 10

Also, from equation (50) and (52) and equations
(13l), (133), and (134) it is clear that

a{x) = S{x) = f3{x)
A A

a{x) = a r{x) = a f{x)

(5l), (l2l), (l22),

where

A

.8 =
p Ao £4

E I 02
o

and the now most convenient definition

(142)

(143 )
4

2 p Ao £
(J =

results in

(l 44) 8 = 1.

From equation (139) it is clear that

(145) p{l) = pi (l) = 0

and hence the constants (lOl-l03) in the general Ritz coordinate functions
(96) and (lOO) reduce to

an = (n+3){n+2)2{n+l)a2{1)

(146) an = (n+3){n+2){n+l)n a2{l)

Yn = (n+2){n+l)2n a2(1).
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For later convenience in numerical calculations it is desirable that integrals
(106)-(111) be independent of both a and ~ and that the exact loading (139)
now be introduced, hence equations (106)-(111) become

1 1
B = a3 J y3Wk

' I(X)V~I (x)dx + 3a2~f y2~ Wk
' I (x)Vn

l

'(x)dx
nk 0 0

1
(1-x)2 W~(x) V~(X)dXC = Q fnk a
1 I

Dnk = -2 Q f (l-x) Vn(x) Wk(x)dx
0

1
Enk = f Wk(x) Vn(x)dx

0

(147) Fnk = 0

where
- 1 - (l-x)ny =

(148)
( (l-x)T1.=

With the integrals (147) now known, it is possible to now evaluate the
critical flutter load from characteristic equation (117) which may be
restated as

(149 )

where

OET
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ank = ; Ank

bnk = Ank + ~q Enk

cnk = yBnk - ~Cnk - ;Dnk + q Enk + sFnk

(150) dnk = Bnk - Cnk .. Dnk + Fnk .

To allow for the utilization of available numerical procedures, it is
convenient at this time to reformulate equation (149) into a standard
matrix 'eigenvalue problem

(15l) (B. - AD~ = O.

Clearly, the matrix problem leading to equation (149) is

(152) (& ).3 + ~ A2 + ~ A+ ~)~ = O.

If the two definitions

A~ Ii
(153) A l = I z

are introduced into equation (152), it is readily shown that the relation

I

- - - -1- - - - ,. - - - -

I
I I

- - - -I - - - - +- - - - .. -
_A-1D : -ti-l~ : -A-1S

I 1

(154 )

results and is exactly of the form (151).

x

Y...

z

x

----

z

9. CONSTRAINTS AND THE NUMERICAL PROCEDURE. First of all, two important
constraints naturally appear in the consiaeration of beam optimization. The
Euler Beam Theory itself is only valid for a thickness to length ratio less
that l/lOth. Since reference will momentarilly be made to comparisons of the
minimum design to a fixed rectangular design with a=~ and since the load
intensity as given in equation (62) increases as the clamped end ;s approached,
the clamped end thickness will be taken greater than or at most equal to the
free end thickness and hence the constraint

(l55) l.l ~ a.
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Hence, since ~ is the larger of ~ and a, the Euler Beam restriction of a
thickness to length ratio less than lila may be expressed as

(156 ) 1
~ <-

20

as the clamped end thickness is really 2a. Practically, one end of the
beam must be of finite thickness or thus u must be finite, this condition
together with equation (l56) result in the constraint on ~ that

(l57 ) 1
O<~<-.

20

(160)

Now, with equation (l57) in mind, the problem of avoiding negative areas is
accomplished by setting the free end thickness to being non-negative which
together with equation (155) results in the constraint on a being

(158) a ~ a ~ U •

Additionally, the calculations for an optimum design will be related
to a fixed standard of a rectangular beam with

(159) a = l.l

and its corresponding flutter load

3 qQ,
Qcrit. = -4 Eb .
recto

Thus, the method of fixing the flutter load will also include determining an
equivalent rectangular beam with the same prespecified flutter load and using
it and its dimensions as a reference. In terms of this rectangular reference
beam and realizing that equation (158) must hold, an added restriction upon l.l
is that

(16l ) l.lrect. ~ l.l

where ~rect. is now the value of ~ for the rectangular reference beam. Thus,
from equations (157), (158), and (16l) the constraints to be used in the
optimization routine are

1
(l62) llrect. ~ ~ < 20

(163) a ~ a ~ l.l •
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10. DISCUSSION. As a preliminary to the mass optimization work, some
results will now be shown for the stability of Hauger's problem. The various
effects of internal and external damping on flutter load will be carefully
considered.

Figure 3 shows the variation of external damping, q, versus flutter load.
Q, for various fixed values of internal damping, ~, with internal damping y=O.
For each fixed value of internal damping, ~, the general tendency is for
flutter load to increase as external damping, q, increases until a flutter
load of approximately Qx 104 = 11.0 is reached; at this time there is a
decrease in flutter load at external damping, ~. further increases with an
asymptotic value of Qx 10 = 8.3 eventually being reached. Notice that as
the fixed_values of internal damping. ~, increase that the values of external
damping, q, at which flutter load reaches a maximum also increase. Also note
that from_this last result it would appear that for a given value of external
damping, q, a maximum flutter load can be obtained by making a proper choice
of internal damping, ~.

Figure 4 now shows the vari~tion of internal damping, ~. versus flutter
load, Q. with external damping, q, now taking on fixed values -- the other
internal damping, y, is again zero. As internal damping, S, increases,
flutter load begins at a value of Qx 104 = 8.3 and increases to a maximum
of approximately Qx 104 = 11.0 and th~n continually decreases for each of
the fixed_values of external damping, q. As fixed values of external
damping, q, increase, the values of internal damping, S, at which flutter
load reaches a maximum also increase. For a given value of internal
damping, ~. a maximum f1utte~ load can be obtained by making a proper
choice of external damping. q.

Figure 5 shows the variation of flutter load, Q, with internal damping,
y, for fixed values of internal damping, S, for external damping set at
q = 1.0. For some of the higher values of fixed values of internal damping.
S, there is a general tendency for flutter load to increase as internal
damping, y, increases to a maximum in the range 10.8 < Qx 104 < 11.4 and
then to gradually decrease. For some of the lower vaTues of internal
damping, S, flutter load starts out at its maximum at internal damping
y=O.O and then decreases as internal damping. y, increases. A maximum
flutter load for a pre-specified internal damping, y, can be obtained
through a proper choice of internal damping,~. As fixed values of
internal damping, S, increase, the values of internal damping, y, at
which flutter load reaches a maximum also increase. but unlike the trend
in figures 3 and 4, the value of this maximum tends to vary slightly.

Figure 6 shows the variation of flutter load, Q, with internal damping,
S, for fixed values of internal damping, y, with external damping set at
q =1.0. For the various fixed values of internal damping, y, it is clear
that flutter load increases as internal damping. ~, increases up to a
maximum of Q x 104 = 11.4 or less and then flutter load decreases with
further increases in internal damping, S. As fixed values of internal
damping, y, increase, the values of internal damping, S, at which flutter
load reaches a maximum also increases, but the value of the maximum varies
somewhat.
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Figure 7 shows the variation of base thickness ~ with tip thickness
a for internal dampings y= 1000. and ~= 1.0 and for external damping
q =1.0 where the curves themselves are for various fixed values of n,
the order of the generalized parabola as given in equation (132). In
Figure 7, the constraint ~ < .05 as expressed in equation (156) is
utilized and will be held to in all future plots. Curves for n = 1,2,3,4
are shown and it is clear that base thickness ~ increases as order n
increases or as tip thickness a decreases. The results of Figure 7
may be directly applied to calculate the mass ratio

(164) MIMo = a + (~-a)/(n+l)

where

(165) M = 2 p £2 bo
as equations (164) and (165) directly result from equations (135) and (138).
Figure 8 shows the variation of mass ratio MIM for generalized parabola's
of order n = 1,2,3,4. It is clear that the miRimum mass ratio will occur
for zero tip thickness, a = 0, which would yield a beam with a knife edge
at the tip. Thus, in any practical applications it would be wise to specify
a minimum tip thickness as a lower constraint on a. It is further clear
from figure 8 that different orders of generalized parabolas yield the
lower value of mass ratio MIMo for different values of a. For example,
n = 2 gives the lowest mass ratio in the range 0 < a < .00825, n = 3
gives the lowest mass ratio in the range .00825 <-a <-.00915, and n = 4
gives the lowest mass ratio in the range .00915 ~ a ~ .0167. It is also
clear that if a beam with a knife edge were allowed, a beam with a mass
reduction in excess of 24.5% would be possible.

Now, as an example of a true mass optimization with a lower constraint
on tip thickness the beam represented in figures 7 and 8 will be optimized
with a Rosenbrock algorithm [9]. For a lower bound of a = .000833 the
Rosenbrock algorithm yields an optimum design at this value of a of a mass
ratio of MIMo = .766 corresponding to a base thickness ~ = .0378 for a
generalized parabola of order n = 2.1. Thus, for this constrained problem
a mass reduction of 23.4% is possible.

Figure 9 shows the variation of base thickness ~ with tip thickness
a for internal dampings y =100. and ~ = 1.0 and for external damping
~ =1.0 for generalized parabolas of order n = 1,2,3,4. Figure 10 shows
the corresponding variation of mass ratio MIMo with tip thickness a.
Clearly, n = 2 gives the lowest mass ratio in the range 0 < a < .00565,
n = 3 gives the lowest mass ratio in the range .00565 ~ a ~ .0TI745, and
n = 4 gives the lowest mass ratio in the range .00745 ~ a ~ .0167. Notice
that for low values of a the curves for n = 3 and n = 4 give much higher
mass ratios and then from figure 9 eventually overshoot the constraint
that ~ < .05. A beam with a knife edge would result in a mass reduction
of at least 27.5%; in this case a beam with a finite tip thickness would
result in a better mass reduction of at least 27.6% and indicates at
least one case where the knife edge condition is not the minimum.

61



For a lower bound of a = .000833 the Rosenbrock algorithm yields an optimum
design at this value of a of a mass ratio of MIMo = .709 corresponding to a
base thickness u = .0308 for a generalized parabola of order n = 1.73 and
hence a mass reduction of 29.1% for this constrained problem.

Figure 11 shows the variation of base thickness u with tip thickness a
for internal dampings y = 1000 and ~ = 10.0 and for external damping q =1.0
for generalized parabolas of order n = 1,2,3,4. Figure 12 shows the
corresponding variation of mass ratio MIMo with tip thickness a for the
parameters specified in figure 11. Note that n = 2 gives the lowest mass
ratio in the range 0 < a < .0083, n = 3 gives the lowest mass ratio in the
range .0083 < a < .0094, and n = 4 gives the lowest mass ratio in the
range .0094 < a < .0167. In this instance a beam with a knife edge would
result in a mass-reduction of at least 24.8%. For a lower bound of
a = .000833 the Rosenbrock algorithm yields an optimum design at this
value of a of a mass ratio of MIMo = .765 for a generalized parabola of
order n = 2.1 and hence a mass reduction of 23.5% for this constrained
problem.

Figure 13 shows the variation of base thickness u with tip thickness
a for internal dampings y = 1000 and ~ = 10.0 and an external damping of
q = 10.0 for generalized parabolas of order n =1,2,3,4. Figure 14 shows
the corresponding variation of mass ratio MIMo with tip thickness a.
Clearly n = 2 gives the lowest mass ratio in the range 0 < a < .0057,
n = 3 gives the lowest mass ratio in the range .0057 < a <-.0014, and
n = 4 gives the lowest mass ratio in the range .0074 < a < .0167. A
beam with a knife edge would result in a mass reduction of at least 27.4%
with slightly lower values possible for a blunt end. For a lower bound
of a = .000833 the Rosenbrock algorithm yields an optimum design at this
value of a of a mass ratio of MIMo = .708 corresponding to a base thick­
ness of ~ = .0309 for a generalized parabola of order n = 1.726 and hence
a mass reduction of 29.2% for this constrained problem.

Figure 15 shows the variation of base thickness u with tip thickness
a for internal dampings y = 500 and ~ = 10.0 and an external damping of
q = 10.0 for generalized parabolas of order n = 1,2,3,4. Figure 16 shows
the corresponding variation of mass ratio MIMo with tip thickness a. In
this case n = 2 gives the lowest mass ratio in the range 0 < a < .00475,
n = 3 gives the lowest mass ratio in the range .00475 < a <-.0065, and
n = 4 gives the lowest mass ratio in the range .00665 < a < .0167. A
beam with a knife edge would result in a mass reduction of-at least 31.5%
and one with a tip thickness of a = .0004 would result in a mass reduction
of at least 32%, but this is still a very small tip thickness. For a
lower bound of a = .000833 the Rosenbrock algorithm yields an optimum
design at this value of a of a mass ratio of MIMo = .682 corresponding
to a base thickness u = .0325 for a generalized parabola of order n = 1.97
and hence a mass reduction of 31.8% for this constrained problem.
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TABLE 1. SUMMARY OF ROSENBROCK OPTIMIZATION RESULTS

%
CASE y ~ q ax104 1J n MIMo DECREASE

1 1000 1.0 1.0 8.33 .0378 2.1 .766 23.4

2 100 1.0 1.0 8.33 .0308 1.73 .709 29.1

3 1000 10.0 1.0 8.33 .0378 2.1 .765 23.5

4 1000 10.0 10.0 8.33 .0309 1.726 .708 29.2

5 500 10.0 10.0 8.33 .0325 1.97 .682 31.8

Table 1 summarizes the results of the Rosenbrock optimizations that were
previously discussed in figures 7 thru 16. It is clear that from the five
sets of parameters for which an optimization was made that reductions in mass
of from 23.4% to 31.8% are possible with a tip thickness constraint of .000833
specified.

11. CONCLUSIONS. An adjoint variational principle has been applied to
the flutter stability problem of Euler beams with both internal and external
damping. An application of a generalized Ritz approximation and the applica­
tion of a variational principle resulted in a characteristic equation for
flutter load. Hauger's problem was then optimized within the bounds of a
special class of parabolic shape functions.

Preliminary studies of the variation of internal dampings and external
damping for the stability problem indicated suitable ranges of these para­
meters for use in the optimization problem. The various plots of mass ratio
versus tip thickness yielded a vital insight into what should be expected
from an optimization routine. It was quite clear that a minimum mass ratio
was obtainable in each case for a knife edge at the beams free end, but this
condition is impractical. Thus, a minimum tip thickness constraint must be
applied to any optimization problem to obtain realistic results. In going
to a Rosenbrock optimization routine with a minimum tip constraint of
a = .000833 it is quite clear that mass ratio reductions of anywhere from
23.4% to 31.8% are possible.
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Buckling of Orthotropic Rectangular Cylinders*

Earl C. Steeves

U.s. Army Natick Laboratories

Natick, Massachusetts

One of the loading situations that must be considered in
the design of packages is that resulting from stacking. Since
this is a compressive loading, the buckling mode of failure must
be considered. To obtain some guidance for this design problem,
solutions to the buckling problem for rectangular cylinders were
obtained. These solutions were obtained by direct solution of
the differential equations and by approximate solution using the
Rayleigh-Ritz procedure. Both solutions are based on classical
orthotropic plate theory and treat the corners by conditions of
continuity. The direct solution which is restricted to the
uniform load results in a transcendental eigenvalue problem for
the buckling load and is solved by a search and interpolation
scheme. The approximate solution utilizes finite difference
approximations in conjunction with the Rayleigh-Ritz analysis
and is applicable to both the uniform and nonuniform load
situations. The constraint equations describing the corner
conditions are incorporated in the Rayleigh-Ritz procedure by
a technique not commonly employed. The resulting algebraic
eigenvalue problem is solved using the Jacobi reduction proce­
dure. Results from the direct and approximate solutions are
compared for the uniform load case and results for the non­
uniform load case obtained using the approximate solution are
compared with experimental results for rectangular fiberboard
cylinders. These comparisons with experiment indicate a need
to examine the nonlinear buckling problem and to include
plasticity effects in the case of fiberboard.

*This paper will be published as U.S. Army Natick Development
Center Technical Report 75-99 entitled, "Theoretical and
Experimental Investigation of the Buckling of Rectangular
Cylinders".
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ENERGY RELEASE RATE IN TERMS OF COMPLEX ANALYTIC FUNCTIONS

M. A. Hussain and S. L. Pu
Benet Weapons Laboratory

Watervliet Arsenal
Watervliet, New York 12189

ABSTRACT. The energy release rate ~ for two dimensional
cracks subjected to either plane loading or anti-plane shear is
most commonly computed by Irwin's crack closure method or the
path independent integrals used by Rice. In terms of analytic
functions of a complex variable, these two approaches give two
distinct expressions for the energy release rate. For instance,
for plane problem the energy release rate is given in terms of
one analytic function using Irwin's approach while the same is
expressed in terms of two analytic functions by the method of
path independent integrals. For special cases, such as Mode I
crack, these two expressions lead to identical results. How­
ever, the identity for the general case has not been established.
In this report we have shown that the expression of '§ for plane
problem in terms of two analytic functions can be further reduced
to the same expression obtained by Irwin's method in terms of
only one analytic function and that the two distinct expressions
of i§ for anti-plane problems are identical.

1. INTRODUCTION. The energy release rate ,§, for two dimen­
sional crack problems subjected to either plane loading conditions
or longitudinal shear can be computed by various methods. The lmost common ones are the ·crack closure' approach of Irwin [1]
and path independent integrals used by Rice [2]. The equivalence
of these two methods is rigorously derived in [2], [3J, and [4].

Such crack problems are usually formulated in terms of one
or two analytic functions of a complex variable. Two distinct
expressions for § are obtained in terms of analytic functions by
these two methods. For self similar crack extensions for which
these analytic functions can be explicitly derived, these two
different approaches, without any ambiguity, lead to identical
results. However for non self similar situations, for example
in branching of a crack, one must be very careful in regard to
the use of path independent integrals in calculating~. In such
a case it is necessary to evaluate the path independent integrals
around a contour just surrounding the tip of the branched crack
and not around the entire end of crack involving the main crack

lNumbers in brackets designate References at end of the paper.
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and the branched crack, (see e.g. [5J). Using this approach it
is shown in this paper that the path independent integrals and
the "crack closure" approach lead to identical results in terms
of analytic functions. This equivalence is shown by the use of
mapping techniques.

2.
analytic
stresses
[ 6J:

(1 )

COMPUTATION OF USING IRWINIS APPROACH. Considering two
functions ~l z , ~l z of a comp ex variable z=x+iy, the
and displacement for the plane problem can be written as

(2 )
~ II I

= 2(z~1 (z) + ~l(z))

(3)

I

2l-du+iv) :: K ¢l (z) - z ¢l (z) - ~l (z)
--

if (X n + iYn)ds = ¢l(z) + z ¢,(z) + ~l(z)

For the anti-plane problem, using F(z) as an analytic function, we
have the stresses and displacement

(4 )

( 5 )

T
XZ

- i T yz = II FI(z)

w = Re{F(z)}

It is convenient to use a mapping function such that the crack
contour and its exterior are mapped onto a unit circle and its
exterior respectively. Let such a mapping be denoted by z=w(~).

Denoting the tips of such a crack by z£ and their images in the
~-plane by ~t' such mapping requires Wi (~£)=O [5J. Hence we have
the following expansion near z£

(6 )
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Using the near field Westergaard solution of the tips of the
crack we have, using the usual notations, with R~O

(7) lim (O'x+O'y) = Re{K!27"7TR e- ie / 2}, K = KI - i KII
R+O

Let the inclination of the crack tip to the x-axis be 0 (Fig. l),
we have from (6)

(8)

and

(9 )

I I

From (l) with ¢l (z) = ¢I (Z;}/w' (Z;), l/Jl (z) = l/J' (d/w' (l;) etc. and
using (8), (9) we have

(lO) lim (O'x+O'y) = 4 Re{¢' (1;.Q,}[2R Wi I (1;.Q,}e io J- l / 2 e-
ie

/
2

}
l;+1;;.Q,

Comparing (7) and (lO) for all 6, we have

After some manipulation using F' (z) = f' (l;}/w' (l;) we get the
corresponding expression for the anti-plane problem:

These expressions may readily be available in literature. It
will be seen that 0 plays a crucial role in path independent
integrals. Following Irwin's approach we obtain the energy
release rates:

(1 3 )
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( 14 ) =
VTf f ' 2(s£)

2 e-iow"(t:)
£

(for anti-plane)

3. COMPUTATION OF ~ USING PATH INDEPENDENT INTEGRALS. Using
path independent integrals the following expressions have been
derived by Budiansky and Rice [7], for an open contour:

( 15 )

(16)

for plane and anti-plane problems respectively (the term in square
bracket is the jump term). Since the crack tip is inclined at en
angle 8 to the x-axis, we need the above integrals for an inclined
coordinate system. Rotating the coordinate axes, counterclockwise
through an angle 0 and denoting the transformed quantities with
superscript (1), we have for the plane problem [6]

z = z{l)e io

<p{l)(z{l)) = ¢(z{l)eio)

(17 ) If (1 ) (z (1 )) = e2i olf (z (1 )e i 0 )

where

( 18 )

I I

~(z)=¢l(z), If(z)= 1JJ 1(z) etc.

J (l) + . J(l) = -io{J
1 1 2 e 1

Using (17) in (15) we have

Similarly for the anti-plane problem we have
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and (19) into (16) gives

It is easy to show that the above integrals remain invariant
under translation of coordinate systems and hence without loss
of generality we make an additional assumption that one of the
crack tips is located at the origin of the z-plane, i.e.,
z£=w{~£) = O. Using the mapping function described previously
equations (15) and (16) become

(21 )

and

b¢J' (t;)ljJl (z:)
- 2 f dr; -

a Wi (z;:)
-¢-.("-r;-) 2 b

- [w(r;) ) ] }
0,1' (z:) a

(22)

where a, b in the r;-plane corresponds to A and B on the z-plane,
in the limit as r~O (see Fig. 1). Now making use of (6) with
z£=w(r;£)=o, (location of the crack tip at the origin of the
z-plane) we see that ljJ'(~£) is finite (see eq. (31)). Equations
(21), (22) can be integrated using a circular contour of vanishing
radius around r;£, (Fig. 1)

(23) (plane)

Note that the jump term in equation (21) vanishes. The correspond­
ing result for anti-plane problem becomes:

Rice has shown [2J that thTl~nergy release rate along the plane
of the crack is given by Jt J. Hence we have
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( 1 ) 21T [e- lO (~'2(Ct) 2 ¢' (1;;9) 1jJ' (1;;g))J
(25) cg = J 1 = Re +

E w"(1:; ) WI' (s~)£

J ( 1) 1T f,2(1';£) fI2(1';£) \
(26) ~ = - - - 11

(-i6 1'( )
+ . 6 )1 4 e w s.lI, e' wll(r;)£

for the plane and anti-plane problems respectively. In the sequel
it will be proved that (25) and (26) reduce to (13) and (14)
respectively.

4. EQUIVALENCE OF TWO DISTINCT EXPRESSIONS FOR ~. Without
loss of generality a traction free boundary condition is assumed
on the crack. Since z.lI,=w(s£)=O we have for s near s£

( 27)

From (1) and (2) and using pOlar.goordinates [6J, the boundary
condition on the unit circle o=e' in the I'; plane becomes, (With
t(cr)=¢' (o)/w' (0))

¢ , (a) ¢' (0) 2a
(28) o - iT re = + {w(o) <P ' (0) +1jJ' (o)} = ar

w' (0) w' (a) Wi (0)

Multiplying by w' (0), which has a zero at a=r;.Q,' we have,

Wi (0)
02 w(o)

(29) ¢'(o) + cjll (a) - <1>(((0) +
Wi (0) Wi (0)

2w(0) w"(o)
¢'(cr) -

2w I (a)
+ 0 a 1jJ'(cr) = a

w' (0) w' (0) w' (a) .
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Substituting (27) in (29) and approaching the limit ~+~1 we
have, (since a and '1 are both on the unit circle):

(30)

Solving for ~'(sl) we have

( 31 )

(32)

Since C1 is on the unit circle we write sl=e ia1 From (8) it is
clear that the top and bottom lines of the crack form a tangent
to the unit circle at 'i in the ~-plane. Consider a point on the
bottom line close to the crack tip, point A in Fig. 1, e=~TI.

S=al-! (as r+O), equation (8) yields

R eio = 1 r2r;~(;.)" (z; )2 IV 1

Taking complex conjugate of (32) and eliminating Rand r we have

Substituting (31) and (33) into (25) and rearranging we get

+
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In which the first term is real and the second term is imaginary,
hence

(1) 4TI ~1(Z;;.Q) ~I(Z;;£)

(34) J, = g = E [w" ('t) w" ('t)]'/2

which is the same as equation (13) obtained by
.... Equation (31) indicates that 1J!1 (Z;;£) is finite.

is due to our assumption that the crack tip is
z-plane i.e., z£=w(Z;;£)=O. (See appendix for a

Irwin's approach .
This primarily

at the origin on
general case).

For the antiplane problem, using cylindrical coordinates,
we have

Again assuming a traction free boundary condition in the vicinity
of the crack tip we have

Im{~ F' (z)e io } = ~ {eioF ' (z) - e- io F' (z)} = a
2i

and using the mapping function (i .e., F' (z)=f ' (I:;)/w' (Z;;)) we have

(36)
"

0 () () -io ) ()e f' I:; /w' z;; = e f'{Z;; /w' Z;; ,
. e

z;;=cr=e'

In the limit as Z;;+Z;;£' using (27) and (33), (36) becomes

Using (37) and (33) into (26) we get

which ;s the same as

]111'

2 e- io w"(1:; )
J/,

equation (14) obtained
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APPENDIX

In the text we have located one of the crack tips at the
origin of the z-plane. This leads to finiteness of 1jJ1 (Z;;.Q) for
the plane problem. For an arbitrary location, Wi (~£) involve
singularity and the integrals together with the jump term
become singular as we take the contour in the z;;-plane of
vanishing radius. Here we show the annihilation of these
terms.

Using Taylor's expansion around the crack tip s~ with
Wi (s.Q,)=O we have (referring to equation (27))

1 {l + cl(/;-<:~) + c2(~-z:;£)2 +... }
Wi I (s.Q,) (z;;-~£)

1
{l + 2 cl(~-~~) + c~(z;:_z;:~)2+ ... }

Wi 12(<:£) (Z;;-1;;~)2

w'(d

W(~) = w(~~) + t(/;-S~)2WII (<:£) + t(s-~~)3WIII (z;;~) +...

1--=(A - 1)

where cl = - (l/2)WIII(Z:;~)/WII(Z;;~) etc.

Contour integrations and the jump terms are given by (Fig. 1)

b d~ b dZ;; 2Z;;.Q, b dZ;;
f --- 'IT i , f = - - f

(z:-z;:~)3
= 0

a Z;;-Z;;.Q, a (Z;:_1;~)2 r a

(A-2)

(~)b =
2~£ ( 1 b i B

2) = 0, (z:;-<:~) = re
/;-<:.Q, a r (s-/;.Q,) a

From boundary condition (29) we have (0=e i8 is on the unit circle)

1 Wi (0) 1 w(o)
(A-3) 1jJ , (a) = $' (0') + cf>1 (0) - cf>11{cr) +

0
2 Wi (0) 0

2 WI (0)

w{o) Wi' (a)
+ cf> I (a)

W,2 (0)
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Substituting (A-1) in (A-3) and using analytic continuation we
have

(A-4) lim tjJ I (1;;) 1 w(Z;R,) *= cjl'{Z;;R,) + \jJ1 (1;)
1;+I',:R, (r,:-1;R,)2 w"{1;R,)

where \jJ1*{r;) is regular at /;R,' Hence

2¢1 (Z;)\jJ1 (z;) 2w(/;R,) ¢1(1',;R,)
(A-5) 1i m ;;

w
,,2

(r;t) 3r;+r;R, Wi (z.;) (r,;-1;R,)

As can be seen from (A-5) and (A-2), (2l) has singular terms as
r+O in the second integral given by

... -
r

Considering now the complex conjugate of the jump term in (21),
we have

____$'2(0) , 2 2w(~~)
w(a)~,- == 0 (-) + --""'"--

w,2(cr) 1;;-~R, w' ,2(l;,q.)

[<p' (l;g,)cjl' I (r;~) t clcjl,2(r,;,q.)] --l-- t'"

t;-~R,

(21 ) ,and (A-2) we have the jump term from

[

~12(~)]b 2~R, 2 w{1',;t)
lim w(~) =-- -
r+O Wi 2 ( z;;) a r WI' 2 ( I;; 1 )

[¢I (7,;R,)¢11 (1;;.lI.) + Cl¢'2(r,;R,)]

(A-8)

From (A-7)

which is the negative of (A-6) and hence leads to annihilation of
the singular terms in (21).
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DEVELOPMENT AND APPLICATIO~ OF DYNAMIC MATHEMATICAL MODELS
FOR EVALUATION OF MILITARY SYSTEMS. FORCES AND DOCTRINE

Roqer F. Will is

US Army Combined Arms Combat Developments Activity
Fort Leavenworth. Kansas

ABSTRACT. This paper starts with a review of alternative combined
arms study objectives for which flexible mathematical models are
required and definition of the characteristics that such models
should possess. Specific mathematical models, involving sets of
simultaneous differential equations, and their solutions (as well as
indications of how these models can be applied to real problems) are
presented in the follow;nq areas:

1. tank combat. including artillery

2. anti-tank weapon employment

3. air defense suppression

4. helicopter-air defense duels

5. support weapon employment rates

1. This paper will cover a variety of classes of mathematical models
of military operations. Before doing that we will briefly discuss the
types of studies we do in TRADOC and explain how mathematical models
fit into our study methodologies.

2. To meet combat development objectives we carry out many different
types of studies, some using large. expensive war games or computer
simulations. These types of applications are listed in Table 1. Ex­
amples of specific studies in some of these categories are:

Type 2. Comparison of a US division supported by scatterable
mines with a US division without scatterable mines.

Type 4. Comparison of the new XM-l tank with the standard
M-60 tank.

Type 5. Evaluate alternative tactics and procedures for
air defense suppression.
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Type 6. Determine the optimum mix of intelligence-gathering
systems.

Type 7. Determine range requirements for artillery.

Type 8. Determine the numbers of mortars of each caliber
required in each type of maneuver battalion.

Type 9. Develop effective countermeasures against antitank
mi ss il es.

Type 10. Determine the impact of political constraints on
tactical nuclear doctrine.

3. First we consider the specific example of a type 2 study -- a US
division without scatterable mines (Force A) compared with the same US
division with scatterable mines (Force B). Suppose we use a large, com­
plex, computer-assisted war game, play two games, and get the results
summarized at Figure 1. We played about a day of combat with Force A
and. starting over against the same enemY force, played about a day of
combat with Force B. Force B appears to be more effective based on the
first three measures of effectiveness, but Force A is more effective if
we use anyone of the last three measures. Thus, as we would expect, the
study results are sensitive to the measure of effectiveness used. A
second point is that the differences measured between Force A and Force
B might not be large enough to be significant (e.g., 27 hours compared
with 23 hours).

4. These aggregated results are backed up by a great variety of detail
that can be studied to develop insights concerning the real differences
in capabilities between Force A and Force B. In particular both games
are based on hundreds of assumptions, some of which might have major
impacts on the combat results. This raises the question: How sensitive
are the results to variations in the assumptions? Some of the assump­
tions are key elements in the scenario.

5. For every study we are required to use a standard scenario. This
could give us results as illustrated in Figure 2, in which Force A and
Force B are not significantly different against the standard size of
enemy attack. The measure of effectiveness used might be, for example,
the percent of US tanks surviving at the end of 3 days. If we use a
larger enemY force and re-run both the Force A game (45%) and the Force
B game (65%) then Force B becomes significantly better than Force A.
Another scenario factor is the amount of close air support available to
the US force. The lower half of Figure 2 shows that increasing the
amount of close air support above standard still leaves Force A about
equal to Force B in effectiveness. However, reducinR close air support
makes Force A significantly more effective than Force B. Thus this
scenario factor reverses the trend.

6. In order to play these six extra games, for investigating the
sensitivity of study results to only two factors, might take 15 people

94



3 or.4.m~nths. It,is clear th~t we need more effic~ent ways of doing
sens1tlvlty analysls. In partlcular, we need a varlety of flexible
mathematical models in many different subject areas, as follows:
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a. ground combat

b. art ill ery

c. attack helicopters

d. close air support

e. battlefield interdiction

f. tacticai nuclear

g. ai r defense

h. reserves

i. replacements

j. resupply

k. air reconnaissance

l. ground surveillance

m. information flow

n. airmobile operations

o. engineer operations

p. t ransportat ion

q. command and control

8. The first example of a model presented here involves the first two
categories, ground combat (primarily direct fire) and artillery. The
four differential equations describing this model appear in Figure 3.
The basic assumptions are:

a. Tanks fire at tanks and artillery is employed against tank units
and also in counterbattery fire against opposing artillery.

7. These models are characterized not by the nature of the mathematical
formulation but by the categories of military operations or systems that
the models represent. Such models are needed to provide analytical sup­
port for different types of studies, in a variety of ways to be discussed

later.



b. The rate at which each side loses tanks is proportional to the
number of tanks employed by the other side (and still surviving) and
proportional to the number of artillery tubes the other side is using
against tanks.

c. The rate at which each side loses artillery is proportional to
the number of artillery tubes the other side employs against artillery.

9. The factors in this model are defined as follows:

B(t) = number of Blue tanks surviving at time t

R(t) = number of Red tanks surviving at time t

H(t) = number of Blue artillery tuhes surviving at time t

G(t) = number of Red artillery tubes surviving at time t

J = rate at which each Red tank kills Blue tanks

K = rate at which each Blue tank kills Red tanks

L : expected number of Blue tanks killed per Red artillery round
fired.

M= expected number of Red tanks killed per Blue artillery round
fired

r = rate of Red artillery fire

p = rate of Blue artillery fire

E = expected number of Blue artillery tubes killed per Red artillery
round fired

F = expected number of Red artillery tubes killed per Blue artillery
round fired

f = fraction of surviving Red artillery tubes employed against tanks

g = fraction of surviving Blue artillery tubes employed against tanks.

Note that the last two factors (f and g) are tactical decision parameters,
in contrast with the other variables that represent numbers available and
performance characteristics of various weapon systems. Therefore this
model does represent one aspect of tactics explicitly.

10. The solutions of this model are in the following form:

a. Number of Blue tanks surviving versus time

b. Number of Red tanks surviving versus time
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c. number of Blue artillery tubes surviving versus time

d. number of Red artillery tubes surviving versus time

These solutions have been obtained analytically, without using a computer.

11. This model has a parallel in any war game in that periodically the
Blue and Red comnanders must decide (unless it is proqrammed to happen
automatically) what part of their surviving artillery' force to employ in
counterbattery fire. To some extent this decision would be influenced
by target acquisition, but this could also be included in the model in
Figure' 3 by expanding the aggregated coefficients J, K, L, M, E, and F to
include several types of target acquisition capability. One difference is
that in a war qame the players have no way to find optimum tactics whereas
this model could be used to find optimum values for f (Red tactic) and for
g (Blue tactic). The values of f and g could also be varied from time
period to time period. Note that the vUlnerability of Red tanks to Blue
artillery fire is included in the factor Mand the vulnerability of Red
artillery to Blue artillery fire is included in the factor F.

12. The advantage in having these solutions as explicit functions of all
the assumptions and parameters is that one can carry out a wide variety of
analytical variations before assuming numerical values for any of the
factors. Some of these variations are:

a. Values versus time

(1) number surviving

(2) percent surviving

(3) force ratio of survivors

(4) number lost

(5) percent lost

(6) loss ratio

b. Time required for mission accomplishment, e.g., Red losses = 30
percent.

c. Sensitivity of II va1ues" or IItimes" to force sizes, tactics, or
other assumptions.

d. Optimize mix of systems

e. Optimize tactics

f. Catalog situations giving the same results
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In the case of tanks the six "values" listed under a. above are as
follows:

a. Number surviving:

b. Percent surviving:

B(t)

100 !li!l
Bo

c. Force ratio: R(t)/B(t)

d. Number lost: 80 - B(t)

e. Percent lost: 100(Bo - B(t)\

"Bo )
f. Loss ratio: L = Ro - R(t)

80 - B(t)
Bo and Ro are the numbers of tanks available at time o. The time required
to kill at least 30 percent of the Red tanks can be found by solvinq the
following equation for time t:

B(t) = 0.70 Bo
The sensitivity of the loss ratio to initial force sizes can be determined
from

dL and dL
dRo Cillo'

13. In this model, tactics can be optimized for Blue by finding that
value of g that will accomplish one of the following goals:

a. Maximize B(t) at a given t (e.g., 2 hours)

b. Minimize R(t)/B(t)

c. Maximize L = Ro - R(t)

Bo - B(t)

d. Minimize time required to kill at least X percent of the Red tanks.

e. Maximize some weighted average of Blue tanks surviving and Blue
artillery surviving at a given time t. (e.g., maximize a B(t) + bH(t)).

14. Using the explicit solutions of this model one can catalog all sit­
uations (combinations of values of input factors) that give the same
results, such as 20 percent of the Blue tanks lost by 4 hours after the
battle starts. One example would be all combinations of Blue artillery
effectiveness against tanks (M) and initial number of Red tanks (Ro)
that result in no more than 5 percent of Blue tanks lost at 4 hours.
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15. The above paragraphs give specific examples of the types of
calculations that can be developed from the type of model illustrated.
In more general terms eight uses of mathematical models of military
operations are:

a. Compare alternative systems

b. Compare alternative tactics

c. Optimize tactics

d. Tradeoffs between system parameters

e. Narrow down number of alternatives to be gamed

f. Select ranges of values for inputs

g. Select likely enemy tactics

h. Sensitivity analysis

Both alternative systems and alternative tactics can be compared in a
force-an-force context. Optimizing tactics has been discussed in the
earlier example. The fourth type of use could be illustrated by trade­
offs between lethality and rate of fire. Type e might be narrowing
down the number of levels of close air support to use in actual gaming -­
levels that are feasible and also have been shown by mathematical modelling
to have significant impact on the particular types of study results of
interest. Type f could involve values for an enemy weapon performance
parameter for which we do not have good estimates. Type 9 could be, for
example. weapon-target priorities.

16. For discussing specific models in this paper we have defined classes
of combat models according to the eight factors in Table 2. Factor 3
refers to variation with time (or with weapon range, for example). We
have given several examples earlier of aqqreqating or expandino coeffi­
cients to represent specific elements such as vulnerability, rate of fire,
tarqet acquisition. etc. (Factor 4). Factor 5 concerns allocations of
weapons aqainst tarqets and the replacements in Factor 6 are either per­
sonnel or equipment.

17. Settinq factors 1 - 6 at two levels each we have 64 classes of
models. Thus, for example, considerinq only tank and antitank direct
fire weapons would qive 64 classes. However. factors 7 and 8 raise the
number of classes of models to well above 256. For example in factor 8
we could have 1,2.3, or 4 types of Blue systems and 1,2,3. or 4 types
Red systems in the models. We have developed at least 50 models in various
classes with the taxonomy of Table 2. For factors 7 and 8 the types of
weapons of major interest are listed in Table 3.
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18. Now we present a model designed to study tactical interactions
between tanks and antitank missiles, in Figure 4. The situation is as
follows: Blue has both tanks and antitank missiles; Red has only tanks;
how should Red employ its tanks? The fraction of Red tank fire directed
against Blue tanks is f. What is the optimum value of f?

19. By solving these three equations to obtain the remaining weapons on
both sides as explicit functions of time and of all the other parameters
(including the initial strengths) we can find out how the optimum values
of f depend on all these quantities and on time (duration of combat).
The solutions are given in Figures 5 and 6. In order to optimize f,
Red could try to maximize the number of Red tanks surviving or the force
ratio surviving;or to minimize the number of Blue tanks surviving, the
number of Blue antitank missiles surviving or some linear comDination Of
these Blue weapons.

20. In Table 4 we list the major interactions in the air defense sup­
pression model presented in Figure 7. Both sides carry out all six
operations listed in Table 4 and thus Red and Blue each have two
allocation problems:

a. Allocate artillery fire against air defense weapons or in
counterbattery fire.

b. Allocate aircraft (close air support) against tanks or against
air defense weapons.

Thus complete analysis of results from this model would involve a game
matrix in which each side has at least 9 alternatives. Artillery versus
air defense at high, medium or low values times aircraft versus air
defense at high, medium or low values.

2l. The allocation factors in Figure 7 are defined as follows:

f R = fraction of Red aircraft used against Blue tanks

fB = fraction of Blue aircraft used against Red tanks

9R = fraction of Red artillery used against Blue ai r defense

g8 = fraction of Blue artillery used against Red ai r defense.

The kill factors H, J, C and D in the fifth and sixth equations coulp
be expanded to include target acquisition.

22. This model has also been solved analytically. A typical battle
is illustrated in Figure 8, based on the following assumptions:

F = .005

R = .010

G = .010

B = .0lD

100

fR = .50

f B = .50



K = .010

E = .015

H :: .02

C ~ .01

gR :: .50 - 9R = .50

9B = .05 1 - 9B '" .95

J '" .03 - fR = .50

o '" .03 - f '" . 50B

W(Y ) :: - 04Y7 . 7

Figure 8 shows the Blue and Red survivors of each type of weapon versus

time. After 30 minutes the Blue tanks are down to less than 50% of

initial strength, Red has lost 8 artillery tubes and Blue has almost no

air defense left. The Red tactic was to use half of its artillery and

half of its aircraft against Blue air defense.

23. In the above example it was assumed that aircraft losses are directly

proportional to the density of air defenses. Some insights concerning the

conditions under which this might be a valid assumption can be obtained

from duel models and force-an-force models of attack aircraft versus

complexes of air defense systems. The next model is a stochastic duel

between an attack helicopter and a single air defense weapon, including

the following factors:

a. detection capabi1ity

b. warning of being detected

c. rate of fi re

d. weapon accuracy

e. weapon lethality

f. vulnerability
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The capability of the air defense weapon to detect the helicopter
and the capability of the helicopter to detect the air defense weapon
are both included. as well as the likelihood that the helicopter will
be aware that it is detected (e.g .• painted by radar). Rates of fire
for both weapons are included as well as accuracy and lethality factors.

24. The basic inputs for the model are listed in Table 5. Using these
inputs the model calculates, for the total encounter of T minutes, the
probability that the air defense weapon is killed, the probability that
the helicopter is hit (but not necessarily killed) and the probability
that the helicopter is killed. This third measure is illustrated in
Figure 9, based on the inputs defined earlier. Using this model one
can study the sensitivity of helicopter (or air defense weapon) success
to variations in a number of system performance and tactical parameters.
such as the following:

flight tactics
bursts fired
rounds per burst

detection capability
warning equipment
jamming

readiness, decisions, response times

round lethality
burst pattern
rate of fire
dispersion.

25. The final example of a combat model illustrates how models can be
developed to represent anyone of three concepts:

a. changing resource employment rates

b. diminishing returns

c. increasing or decreasing effectiveness with time.

The model involves both Red and Blue employing support weapons at rates
that change with time (see Figure 10). The support weapons could be
attack aircraft, mortars, artillery, tactical nuclear weapons or mines.
Blue and Red employment rates are each characterized by three parameters.
These exponentially decreasing rates, together with the single weapon
effectiveness, combine to kill the basic elements (e.g., tanks) in
addition to the ability of these basic elements to kill each other, as
illustrated in the upper half of Figure 11. The Blue tank survivors
versus time, as shown in the lower part of Figure 11, is one half of the
solution of this model. A similar expression is available for Red tank
survivors.

-

26. The Blue force could use these expressions to find optimum values
for n. m, and b (representing the employment tactics for support weapons).
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This problem is a special case in the calculus of variations -- to find
the optimum function from a given class of functions.

27. We have developed a facility for rapid design of mathematical models
tailored to particular problems. In Tables 6 and 7 some of the design
variables are reviewed. Sensitivity analysis of uncertainties is treated
either as variations of key factors in deterministic models or as random
variables in stochastic models. Representation of optimum tactics, in
terms of allocation decisions, has been illustrated in several different
models. Clearly, various tradeoffs between quantity (e.g., number of
tanks initially available) and quality (in terms of either vulnerability
or killing power) can be easily studied with these models -- finding those
combinations of quantity and quality that yield the same results (e.g.,
number of Red tanks killed by the end of three hours).

28. Using cost constraints and cost-quantity relations the models can
be used to find optimum mixes and break-even points -- using combat
measures of effectiveness that are consistent with the other applications.
Anew objective will be to incorporate adaptive tactics into some of the
models, so that the model can learn and develop new tactical decisions
not anticipated during the formulation of the model. Comparisons of
equal cost forces on the basis of differences in effectiveness would be
straightforward. In addition, with these models we can set an effect­
iveness goal and calculate the number of systems that are required (and
their total cost) for an alternative force.

29. Using appropriate members of the following families of functions:

k-cx
a. be + f

b. bx k l
c. b[1 -e -CXJ

most cases of diminishing returns, increasing or decreasjng effectiveness
and increasing or decreasing resource commitment rates can be represented,
as illustrated in the last model presented. Examples of increasing or
decreasing effectiveness are: new weapons employed for the first time;
increasing hit probability as range decreases; targets taking cover;
voluntary suppression.

30. Expansion of coefficients was illustrated in several cases, to rep·
resent system parameters, environmental constraints and tactical alter­
natives. Further model developments will incorporate more interdependence
between coefficients, such as artillery fire making targets less vulner­
able to direct fire or mines making targets more vulnerable to direct
fire. Various non-linear relations, such as that between aircraft and
air defense are candidates for variation. Alternative levels of aggre­
gation could be applied separately to the representations of direct fire,
fire support, target acquisition, etc.
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31. A model could include separate equations for each echelon: company,
battalion, brigade. Movement of forces, depending on strengths, time,
and terrain could also be included. In item 21 of Table 7, "lateral units"
refers to representation of mutual support (or failure to support). Future
model developments will also include more explicitly the following features:

a. mission

b. doctri ne and tactics

c. Situation

(1) Physical envi ronment

(2 ) enemY alternatives

d. conditional decision~making

e. system performance

f. constraints

g. target acquisition

h. supply

i. fire support

j. weather

k. communications

1. organization

m. training

32. A number of approaches for validation of the types of mathematical
models presented in this paper are being considered. These are:

a. specific input data from tests

b. high resolution simulations

c. other mathematical models

d. OIVWAG submodels

e. results of other analytical studies

f. historical data

g. ~anl:5imul~tions
~:\:>,> '-;:;.&'~,~-".>",~,. -, "."

h. 'mil ft~'rij'lj(l~ment
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Table I

Types of Applications of Models

1. Effectiveness current forces

2. Compare alternative forces

3. Effectiveness current systems

4. Compare alternative systems

5. Evaluate alternative strategies s tactics, conceptss
deployments, doctrine

6. Tradeoffs between systems, optimize force mixes

7. System performance requirements

8. Force requirements)numbers of systems required

9. Analyze enemy tactics and friendly force countermeasures

10. Impact of constraints (political, environmental, opera­
t ional)

11. Unit performance inputs for theater-level models

12. Define test data required and extrapolate test data
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US Alternati ves
Measure of Effectiveness

Force A Force B

Enemy losses Tanks 580 650
Personnel ~,t.Suu ~,~::>U

Time required for enemy mission (hrs) 23 27

US losses: Tanks 250 300
Personnel 4,200 5,800

Tank loss ratio Enemy 2.32 2.17
OS

Figure 1. Typical Divwag Results

Effectiveness of US forces
Assumption

Force A Force B

Size of enemy attack

l. Standard 67 71

2, Larger 45 65

Amount of US close air support

1. Standard 67 71

2. Larger 74 76

3. Small er 56 40

Figure 2. Standard scenario problem
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Tank loss rates Artillery loss rates

dB • JR + fLrG dH = Er (l-f) G
dt iff

dR dG '" Fp (l-g) H
dt • KB + gMpH df

Figure 3. Analytical model

Table 2. Classes of Two~sided Combat Models

1. Deterministic or stochastic

2. Linear or non-linear

3. Coefficients constant or variable

4. Coefficients aggre9ated or not

5. Allocation decisions: No or Yes

6. Types of weapons:

Direct fire only or not

7. Replacements: No or yes

8. Number of types of systems:

Blue

Red
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Table 3. Types of Weapons
'"

Dlrect Fire Other

Tanks Artillery

Machine Guns Mortars

Infantry Hel icopters

Anti-tank Missiles Ai rcraft

Ai r Defense

Mines

Nuclear

~-

Red Tank Loss Rate

dX = BY + CZ
df

Blue Tank Loss Rate

dY = EfX
Of

Blue Anti-tank Missile Loss Rate

dZ = H (1 - f) X
df

Initial Numbers: Xo, Yo, Zo

Red Tactic: Fire fraction f at tanks.

Figure 4. Anti-tank Weapon Employment Model
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BYo + CZo

Red Tanks Survivin~

+

X{t) = Xo cosh {t -YBH + CH (l - f))

sinh { t VBE F + CH (l ~ f))YBEf + CH (l - f)

Blue Anti-tank Missiles Surviving I (t) =

BEflo - BH (l-f) Yo + CH (l-f) Zo + BH (l-f)Yo cosh (tlBEf + CH{l-f))
BEf + CH (l-f) BEf + CH (l-f)

+ H(l-f)Xo sinh (t 1 BEf + CH (l-f) )

i BEf + CH (l-f)

Figure 5. Tank and ATM Survivors

Blue Tanks Surviving

CH (l-f) Yo - ECflo +
BEf + CH (l-f)

EfXo
+

lVBEf + CH (l-f)

Force Ratio Surviving:

Y (t) =

fBfYo + ECflo cos h ( t -V BEf + CH (l-f))
BEf + CH (l-f)

sinh (t ...; BEf + CH (l-f) )

X(t)

a Y(t) + bl (t)

Figure 6. Anti-tank Weapon Employment Model
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Table 4. Air Defense Suppression Model

1. Tanks Attack Tanks

2. Artill ery Attack Art ill ery

3. Artill ery Attack Air Defense

4. Air Defense Attack Aircraft

5. Ai reraft Attack Tanks

6. Ai reraft Attack Air Defense
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Blue
dX. = - FY, - GfR Y6
crt

TANKS

Blue dX4 = - K(l - 9R) Y
4"Cit"

ARTILLERY
Red dY 4 - E(l-gB) X4=

Cit

Blue dX 6
AIRCRAFT dt '= W(Y7)

Red dY6 = Z (X7)
dt

Fi qure 7. Loss Rates
Air Defense Suppression Model
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90 Red Force
80

60 15 15 15

40 10 10 10

20 5 5 5

0 0 0
00 10 20 30 20 30 10 20 30

Time
.,..

TANKS ARTILLERY AIR DEFENSE AIRCRAFT

.......
--'
No

30 15 15 15

20 10 10 10

10 5 5 5

0 0 0

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30

I Blue Force

Figure 8. Air Defense Suppression Model



Table 5. Duel Model Inputs

Hel i copter AD Weapon

Hit Probability:

Warned target A

Unwarned tarqet B

Kill Probability C 0

Detect First Probability E l-E

Probability Aware of Detection F

Rate of Fire V R

Duration of Encounter T T
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+ (1-F) Pz }

{
TR TV}

1 - (l-B) (l-C)
R/~

R/V
1 ~ (1-C) (1-B)

Pt'obabil ity Hel icopter Ki 11 ed:

OEP 1 + O(l-E) {F [rz - ~B-A)J

Where

P
1

' (l-C) C-(1-B)

P2 = 1 (1-B) R/V

1 - (1- C) (1 -B) R/ V

Figure 9. Sample Model Output

Blue Force Red Force

n

m

p

r

t ...
-bt

f(t) = (n-m) e +m
-ct

g(t) = (p-r)e + r

Sir.g1e Support Weapon Effectiveness

B1 ue: No Red: Mo

Figure 10. Support Weapon Employment Rate Model
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dB = - KR(t) - Mo (p - r) e - ct - Mo r
B1 ue dt

dR- - btdt = - JB(t) - No (n-m) e - No m

B(t) • (Bo + N3
m

) cosh (t 'YKJ) - ~o -I ~ + Mar)sinh (t m)
(KJ

+ No(n-m) G-II -9 +
b2 - KJ

Mo (p -r) ( ..[Kf -.sJ
2c - KJ

sinh (t{Kj)

+ KNo (n -m)
e

b2 - KJ

-bt
+ CMo (p-r) e - ct

C2 - KJ
- Nom

-J-

Figure 11. Loss Rates of Maneuver Elements
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Table 6. flexibility and Variations

1. Sensitivity analysis of uncertainties

2. Optimum tactics, employment, allocat1bm

3. Quantity versus quality

4. Optimum mix: tradeoffs; break-even points

5. Adaptive tactics

6. Compare equal cost forces

7. Increasing effectiveness

8. Decreasing effectiveness

9. Increasing commitment

10. Decreasing commitment

11. Time-varying constraints

12. Diminishing returns

13. Factors within coefficients

14. Interdependence between coefficients

15. Non-linear relations

16. Alternative measures of effectiveness

17. Time period variations

18. Alternative levels of aggregation

19. Several echelons

20. Movement of forces

~. Lateral units

22. Model non-combat operations
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HOMEOSTATIC CRITERIA FOR ASSESSMENT OF THE MORPHOLOGICAL STATE

OF LARGE SCALE HYBRID ANALYTICAL-SIMULATION MODELS

Howard M. Bratt
Reliability and Maintainability

Modeling and Analysis Section, Eustis Directorate
US Army Air Mobility Research & Development Laboratory

Fort Eustis, Virginia 23604

A valid simulation data interval should represent an unbiased slice
of time taken from a continuous process. Evaluating model achievement of
stability is a process unique to each simulation model and to the simula­
tion experiment under test. That is, a system has achieved a homeostatic
condition when the major parameters by which the system performance is
measured have reached a morphologically unchanging state.

This paper discusses the length of the stabilization period
which should precede the data gathering portion of the simulation run
(Fig 1). The simulation model under consideration is the Army's Aircraft
Reliability and Maintainability Simulation model, a company level tactical
operational model described in reference 1 and reference 2.

The analytical algorithms used in the stochastic ARMS Model to
establish the approximate attainment of a morphological state (stability)
are as follows:

1. Choose an acceptable stochastic parameter and sample its
magnitude at even increments of time, e.g., once every day.

2. Put each sample in a table which also contains all prior
samples up to this time.

3. As the ARMS model used General Purpose Simulation System
(GPSS) Language, the current mean and standard deviation are readily
available as each new sample is entered into the table.

4. Divide the table standard deviation by the square root of
the current number of samples to obtain the standard error of the mean.

5. Carryon a simultaneous computation to obtain a "smooth
exponential mean" utilizing a 20% tracking coefficient by summing 80% of
the past value of the "smooth exponential mean" plus 20% of the latest
sample. (This in turn, becomes the prior (80%) value for the next sample
(20%» •
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6. When the value of the smooth exponential mean falls within a
band formed by the table mean + the standard error obtained in (4) above,
it is assumed that the model is stabilized.

This tracking algorithm is simple enough but its application
requires considerable judgement and may vary between experimental scenarios.
In the first place, it does not absolutely guarantee the existence of the
morphological state for every stochastic parameter in the model. Only a
set of algorithms monitoring every key stochastic variable could do that
and the ARMS model's homeostatic criteria is monitoring only one stochastic
parameter. Obviously, the choice of the parameter to be monitored is
critical and it has taken considerable effort to arrive at the correct
choice.

Some characteristics of the ARMS model require explanation in order
that the reader understand the rationale for the choice of the stability
criteria parameter. The ARMS model is close to being "universal" in the
sense that it can accept almost any combination of number and type of
aircraft, operational utilization flight frequencies, maintenance and
repair policies, manpower, ground support equipment and logistics supply
systems. The output statistics are readily convertible to operational
cost estimates and mission performance effectiveness assessment.

Prior to start of a simulation run, each aircraft is initialized
by assignment of a prior number of flight hours and calendar days to
provide an approximately equal spacing between future flight hour a/o
calendar day inspections (Fig. 2, 3). Highly critical components some­
times have a TBO (Time Between Overhaul) requirement and these components
on each airplane are also initialized in relatively equal increments
over their individual (each components TBO requirement may be different)
TBO period. All of this initializing is very helpful in speeding up
the simulation stabilization. However, when the simulation starts, no
aircraft has any required maintenance actions and all are setting in
the availability pool ready to go. This is not normal and until we have
a "typical" number of maintenance actions distributed over the aircraft
company we should not start collecting data.

Let us return once again to the discussion of some of the details
of the ARMS model which will aid in the choice of the stability parameter.
Airplane components fail in the ARMS model only during periods in which
they are operating. Discovery of a component failure at the time it
occurs is a probability assigned by the analyst to each element. If not
discovered at times of failure, the probability of it being discovered at
each 8'ubsequent event, e.g., flight, inspection, etc., is provided by
the analyst. Up to this point we have identified THREE parameters of
potential interest.
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1. Failures which have occurred and were discovered at the time
of occurrence.

2. Failures which have occurred and have not yet been discovered
and,

3. Failures which have occurred and were not discovered at time
of occurrence but have subsequently been discovered.

Because of another feature of ARMS model policy, none of the above para­
meters can be used in their present form for our criteria. This feature
is the categorizing of component failures into "Hard Down" (grounding
the aircraft until repaired) and "Deferred Maintenance Actions" (fix as
soon as possible but fly all required missions in the meantime). In
addition, the ARMS analyst identifies the maximum number of "Deferred
Maintenance Actions" he will permit on anyone aircraft and any deferred
maintenance actions in excess of this number will also send the aircraft
"Hard Down." Because of this variability in the number of allowable
deferred maintenance actions per aircraft in different simulation experi w

ments, the daily total of deferred maintenance actions is not a good
indication of stability. However, because both hard down maintenance
actions and deferred maintenance actions eventually result in the assign­
ment of maintenance actions to be worked off on the aircraft, this
parameter "the number of maintenance actions assigned to be worked off
in any 24 hour period" becomes the selected stability criteria parameter.
By normalizing all stability computations to a constant number of aircraft
(we chose 30) base, our stability criteria becomes independent of the
number of aircraft in any experiment and our selected criteria for achieve­
ment of stability (although not the time required to achieve it) is inde­
pendent of the aircraft utilization rates. We also conducted other investi­
gations relative to the best value to use for the tracking coefficient
prior to our selection of 80% of the last value plus 20% of the new sample.

When the stability criteria has been satisfied, the model auto­
matically transitions from the stability period to the data gathering
period on midnight of the following Sunday. At this time, many of the
data values accumulated during the stability period are re-initialized
(zeroed out) while other parameters remain unchanged (Fig. 4).

Again, there is no guarantee of stability with the selected cri­
teria and the analyst must use reasonable judgement in the evaluation of
the stability requirements of any given experiment. -We have found that
in a reasonably active simulation, this criteria will cause the model to
run 3-4 weeks to attain stability. The length of the data run, after
stabilization, is whatever was chosen by the systems analyst.
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THE APPLICATION OF INFINITESIMAL TRANSFORMATION GROUPS
TO THE SOLUTION OF NONLINEAR PAR TIAL DIFFERENTIAL EQUATIONS.

George W. Ullrich

US Army Mobility Equipment Research and Development Center
Fort Belvoir, Virginia 22060

ABSTRACT. The fundamental aspects of the method of infinitesimal
transformation groups toward determining the global invariance group
of partial differential equations are reviewed. The primary discussion
rests upon the application of this method to a system of two nonlinear
partial differential equations describing a biological diffusional trans­
port process. With the full invariance group determined, we proceed
to find invariant solutions for those equations under independent one­
parameter subgroups. For this manifold of self-similar solutions the
governing partial differential equations reduce to ordinary differential
equations which involve only the similarity variables. The latter
equations are solved explicitly for those cases which yield one­
dimensional traveling wave solutions.

INTRODUCTION. In order to solve the nonlinear partial differential
equations encountered in nature, the mathematician must choose prudently
from among a variety of ad-hoc analytical methods of attack. While
there is no general extant theory for nonlinear PDEs, some powerful and
far-reaching methods of analysis have been advanced. In this discussion
we present a group-theoretic method that may be employed to systematically
generate self-similar solutions for both linear and nonlinear PDEs.

BACKGROUND. Consider the set of one-to-one continuous transformation
which map the :x-y space into itself,

X' ::: x' (x,y;E)

y' '" y' (x,y;E)
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where E denotes an arbitrary parameter. The transformations (1)
comprise a group provided that:

1) Successive transformations satisfy a closure property

2) Each transformation has an inverse which is a member of the group

3) There exists an identity element € so that

Xl (x.y;€) = x y' (]~.Y;€) = y •

Expanding the right~hand-sideof Eqs.
denoted by E =€

(1) about the identity transformation,
, we obtain

x' = x + (E-€)X(X.y) + O(E-€)2

y' = y + (E-E)Y(X.y) + O(E_€)2 (2 )

Eqs. (2) constitute a group of infinitesimal transformations in the
neighborhood for the identity transformation, i. e., they satisfy the
aforementioned group properties to within O(E-E).

Almost 100 years ago Lie (1881) began to develop his theory of
one-parameter groups. And although he discussed the application of
infinitesimal transformation groups to the solution of PDEs, subsequent
work followed mostly along the path of finite groups. Most notable is
the work of Dickson (1924) and Cohen (1931) who demonstrated the utility
of group theory for integrating ordinary a s well as partia 1 differentia 1
equations. Recognizing the relationship between dimensional analysis
and group theory, Birkhoff (1950) proposed a systematic analytical pro­
cedure for reducing the number of independent variables in a system of
PDEs, thus facilitating integration. Morgan (1952) provided a generali­
zation of this method with rigorous proof of its validity. In es sence,
the Morgan theory states that any system of PDEs, each of whose member
equations is conformally invariant under a one-parameter group of
transformation, may be reduced to a simpler system involving one less
independent variable. This so called similarity reduction is effected
by transforming the original n dependent and m independent variables to
the set of n dependent and m-l independent similarity variables which
are the functionally independent group invariants. To each one­
parameter group there corresponds a self-similar (invariant) solution
which is obtained by solving the simpler reduced system.
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For example, consider the steady-state heat conduction in a hollow
right circular cylinder. The temperature distribution is governed by
La pIa ce I s equa tion

rr + T = o.
xx yy

It is straightforward to show that Eq. (3) is
( • I I""' I (6 ) [ T + T ]1. e., Tx t X f + 1 1 , = w X 'J y, xx yyy y

(3 )

conformally invariaht
) under the rotation group

(5 )

X' = xcos6 + ysin6
y I = xsin6 + ycos6 (4)
T' = T

where 6 is the group parameter. Thus, the Morgan theory predicts a
reduction in the PDE (3) to an ODE by introducing the similarity variables

R = (x2+y2 ) 1 /2

rr = T(R)
which are the invariants of the group (4). Eq. (3) then becomes

(6)

One should note that the Morgan theory does not supply an effective
method for determining all of the admissible one-parameter groups of
transformations. A further deficiency is the lack of a formal mathematical
procedure for establishing the group invariants. Consequently, in a
typical application of the theory, simple one-parameter groups of trans­
formation are assumed so that the invariants may be determined by
inspection, as demonstrated above.

The latter shortcomings are eliminated by the use of infinitesimal
groups a 5 first shown by Ovsjannikov (1969). With this method a 11
similarity variables and the functional forms of the concomitant sel£­
similar solutions may be derived directly from the infinitesimal version
of the full invariance group of transformations. Further applications
and ramifications of the method are given by Bluman and Cole (1969),
Woodard (1971), Ames (1972), Rosen and Ullrich (1973), and Ullrich (1974).
In the following analysis we elucidate the funddmental aspects of the
infinitesimal similarity method. However, the discussion will primarily
focus on its application to a specific system of PDEs.
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SIMILARITY ANALYSIS BY INFINITESIMAL TRANSFORMATION GROUPS.
- --

Consider the second-order system of nonlinear PDEs,

a8(x,t)
at

I-n ,hp(x,t)
~ x ax (7 )

E..t ­
3t -

(8)

For the case of one-dirnp.nsional symmetry (n=l) and the identification,

e
38 _
at=

(~)l-m
s

00

( m-I- I-m)ks b
00

o/(l-m)]l

o < m < 1 (9)

(10 )

(ll)

Egs. (7) and (8) become (Ullrich, 1974)

3b 3 2b a 3
at = 11 W - 0 3x(b ax~ns)

(12 )

(13 )
-ks~=

3s
3t

Letting b (x, t) and s (x, t) denote bacterial concentration and substrate
agent concentration, respectively, and considering ).1)0 and k as constant
parameters, Eqs. (12) and (13) comprise a model for a biological diffusional
transport process known as bacterial chemotaxis':' (Keller and Segel, 1971).
In particular, the latter system of equations describes the propagation of
plane - symmetric bands of bacteria in a capillary containing a single sub­
strate chemotactic agent that is consumed in the proces s. An extension
of these equations to cases of two- and three-dimensional symmetry is
given by Egs. (7) and (8) with n::::2 and n:::3, respectively.

';'Chemotaxis is the apparently purposeful response of some species
of motile bacteria when subjected to gradients of a critical chemical
in the substrate medium. The response is characterized by a spatial
ordering (swarming) of bacteria into distinct bands (I-D) or rings
(2-D) which move preferentially toward higher or lower concentrations
of the substrate agent.
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To recapitulate, the manifold of self-similar solutions to a system of
PDEs is uniquely determined by the invariant solutions of those equations
under appropriate one-parameter groups of transformations. Accordingly,
we require Eqs. (7) and (8) to be simultaneously invariant under the
generic one-parameter group of transformations

x' x' (x,t,u,v;s)

t' = tl(x,t,u,v;s)

u l = u' (x,t,u,v;s) (14)
v' = V' (x,t,u,v;s)

(15 )
e(x',t')

1jJ(x',t')

where u and v are the generic dependent variables (u = B(x. t)
and v = 1jJ (x, t) being unique solution surfaces) , and s is the
group parameter.
In addition, we require the invariance of a 11 boundary conditions
B.Cu,x,tJ = a & C.(v,x,t) = 0 given on the curves

J .l ().3. (x, t) = 0 and y. x, t = 0 that comprise the boundaries
of thf;:JregiOnS of definitio~ of the unique solution surfaces u = e(x,t)
and v = 1jJ(x,t) , respectively. Note that the group of trans forma -
tions (14) features complete mixing of the independent and dependent
variables, thus defining a one-to-one mapping of the u, V, x, t space
into itself.
According to the stipulated invariance conditions, the unique solution
surfaces (a s socia ted with appropriately prescribed boundary conditions)
must map into themselves, i.e. I the solution surfaces must be invariant.
Mathematically this is stated as

u ' (x,t,e(x,tJ ,1jJ(x,t);d =
v ' (:x.,t,e(x,t),1jJ(x,t);s) ==

In principle, Eqs. (15) are sufficient to determine the admis sible functiona 1
forms of 8 and 1jJ •

We now make a decisive simplification, a la Lie, by studying the
invariance in the neighborhood of the identity transformation. Consider the
infinitesimal version of the group of transformations (14),

x' = x + sX(x,t,u,v) + O(s2)

t' = t + sT(x,t,u,v) + O(s2)

u' = u + sU(x,t,u,v) + O(s2)

v' = v + sV(x,t,u,v) + 0(s2) (17)

where E=O corresponds to the identity transformation. It can be shown
(see e.g. Cohen, 1931) that invariance of a function f(x,y) under a
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(9)

(18)

u(x,t,e,W)

v(x,t,e,lji)

one-parameter, infinitesimal group of transformations is a necessary and
sufficient condition for invariance of the function under the corresponding
finite group. The advantage of using the infinitesimal approach in our
analysis is that the invariance c;ondition in the neighborhood of the
identity implies linear (and hence tractable) equations for X, T, D, and V.

Using Eqs. (15) and (17) we proceed to write the infinitesimal versions
of the invariance condition for the solution surfaces,

e(x+gX,t+ET} = e(x,t} + gU(x,t,u,v) + 0(£2)

ttJ(x+€:X.t-tt;T) = lji(x.t) + EV(X,t,u,v) + 0(g2)
Expanding the left hand side of Eq. (18) in a Maclaurin series in £ and
equating terms of 0(£ )we find,

X(x,t,e,ttJ)8x + T(X,t,e,tp)Ot =

X(x,t,e,W)ttJx + T(X,t,e'W)Wt =
the equations describing the invariant surfaces.
The latter Eqs. (19) are first-order and quasi~linearwith the associated
Lagrange characteristi.c equations

dx dt de
- = - =X T U

dx = dt = ~ (20)
X T V

We can find an integrating factor for the left equality of Eqs. (20) i.f X/T
is independent of e and 1jJ. The resulting integral

n(x,t} = canst. (21)

defines similarity curves in x, t space. From the right equalities of
Eqs. (20) we then obtain

u{x,t)

vex. t)
=
=

F1(x,t,n,f1(n))

F
2
(x,t,n.f2 (n)) (22)

where f
1 (n)and f 2 (n) are the solutions of the simultaneous ODEs obtained by

substituting Eq. (22) into Eqs. (7) and (8). Hence, we have shown that
the functional form of the similarity solution given by (22) can be derived
directly from the infinitesimal version of the full invariance group.
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We proceed to determine the admissible forms for the quantities X, T,
U, V,Le., those infinitesimal functions for which S'(x', t ') and

1jJ' (x' ~t') are solutions to equations (7) and (8) with all the
variables primed. This calculation requires expressions for the partial
derivative terms appearina in equations (7) and (8) with the variables
primed. Since u = 8(x,t) and v = 1jJ(x,t) are the solution surfaces,
it is expedient that all partial derivatives be calculated with respect to those
surfaces the transformed space and time variaUes then being given by
functions of the form

x' = x'(x,t)
t' = t'(x,t)

From Eqs. (17) and (23) it follows that

dX 1 dx + X e + X 1jJ ] + 0(E;2)
ax'

;;:
x u x v x

ax d Xt + XuSt + Xy 1)Jt] + 0(e: 2 )
at' =

at 1 e:[Tt + TuS t + Tv1jJt] + 0(e: 2 )=at'
Cit e:[T + T e + T 1jJ ] + 0(E: 2 )
ax·

;::; .
x u X y X

(23)

(24)

Using (24) I we can now calculate the transformation equations that relate
the various partial derivative terms. We first consider the transformation
equations for u and v given by (17) along the solution surfaces

e and 1jJ and write

e'(x',t')

1jJ'(x',t')

= a(x,t) + E;U(x,t,8,1jJ) + 0(e: 2 )

= 1jJ(x,t) + e:V(x,t,s,1jJ) + 0(E: 2 ) • (25)

Hence it follows that

ae' =at' at + s{Ut + (Uu-Tt )8 t - xtS x - Tue~

- X e 6 + U 1j! - x a 1jJt - T 6t 1j!t} + 0(e: 2 ) •u t x v t v x v
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and

~ =:
at' ~t + E{Vt + (Vv-Tt)~t - Xt~x

- xu~xet - Tu~tet} + O(s2) .

- T ~2 - X ~ ~ + v e
v t v t x u t

'.::he spatial derivative terms ae' lax' and a~' lax' are formed from Eqs. (26) and
(27) by interchanging the roles of t and x and T and X. Finally, the required
mixed partial derivative term follows directly from (26)

= ext + E{Uxt + (U -T )e + (U -X)8 T 82
xu xt t ut xt x xu t

- X e2 - T e2~ + (U - T X )e e - x e 2eut·x vu t x uu ut xu x t uu x t

- x e ~ e - T 82e - x 8 - T e + (U - x - T
t

)8 x.
tvu t x x uu txt xx x tt u x .

- X A e - Tuette x - 2X e tB - 2T e ~e~ + U 0u;u;: tux x u x" u xv t

+ Uvt~x - Xvt~xex - Txv~tet + (Uuv ~ Xxv)~tex

+ (U - T )8 ,I, - X ,I, ,I, 0 - T ,I, ,I, e + U ,I,.
vu vt t 'f'x vv'f' t 'f' X X vv'f' t 'f' X t v'f' X'G

- Xv8xx~t - Tvett~x - Tvext~t - Tvet~xt - xvex~xt

- x ~ e - x e2~ - T ~ e e + U ~ ~ } + O(s2)v x xt uv x t uv t t x vv t x

Rewriting Eqs. (7) and (8) in terms of the primed variables and substituting
the latter transformation formulas for the derivative terms, we obtain

a8' (, )l-n ~
"at' - x dX' =

and

ae
at

~
at'

=
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Ut + (Uu Tt)Ot - xte x

T ,I, 8 (l_n)x-n~"- v~t t - ~x

- Xv1/J~ - Tv~x~t + Vu8x

where
Q

1 = - T 82 - X 8t O + U ~tu tux v

- xl-n[u + (v - X)~ -
x v x x

- T ~ 8 - X ~ 8 ]
u t x u x x

X ° ~tv x ;

'1' ~x t

and

x t)8x . x

T)~ - X ~ - T ~2 - X ~ ~ + V 8 - X Ij! e
t t t x v t v t x u tux t

( ~2 ~l (n-l)x X8 t - x [U t+ (U - T )0 + u -x x xu xt t ut

- X 82 + (U - T - X )8 8 - X 0 2 8 - T 8 28
ut x uu ut xu x t uu x t uu t x

- T ,I, 8 ­
u~t t

- T 8
t
2

xu

=

- X 8 - T 0 + (U -X - T)8 - X 8 8
t xx xtt u x t xt u xx t

(32)

- T 8 El - 2X 8 t e - 2'1' 8 t 8t + U \(it + U t~ - Xvt1/Jx8xu tt x u x x u x xv v x .

- T ,I, 8 + (U -X )", 8 + (U - T )8 ,ir - XrI, ,I, 8
xv~t t uv xv ~t x vu vt t~x vv~t~x x

- T "'t'" 8
t

+ U ,I, - X e ,I, - T 8 ,ir - T e ,I, TO,"
vv~ ~x v~xt v xx~t v tt~x v xt~t - v t~xt

- X e ~ - X ljJ e - X 82~ - T ~ e 8 + U ~ ljJ - T 821/1u x xt v x xt uv x t uv t t x vv t x vu t x
~

- X e ljJ 8 ] + (n_l)xn- 2Sxe-18 8 - xn- l SO- 2Ue 8 + xn-ISe-Ie lu
xu t x x x txt t x

+ (U - X )8 + U ljJ - T 8 - X 82 - T G 8 -T e ljJ - X ljJ 8 ]u x x v x x tux u t x v t x v x x

+ xn- I S8-l e [Ut + (U T)8 - X 8 - T 82 - X 8 8 + U 1/1x u - t t t x u t u t x v t

Next, we ensure the invariance of the solution surfaces by requlrJ.ng that
the quantities Q

l
and Q

2
in Eqs. (29) and (30) be identically equal to zero.

This so called "classical method" results in a system of linear partial
differential equations that must be satisfied by the X, T, and V.

Since both 8 and ljJ can be prescribed arbitrarily at an init.ial instant
of time, we must equate to zero the coefficients Of the functionally
independent terms in e~ljJ.and their d~rivatives ~n QI = 0 and Q2 = O.
Now et and ljJt are speClfled by the rlght-hand slde of Eqs. (7) and (8) and
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must be eliminated by substition. the homogeneous coeffecient equations
that ensue are linear in X, T, U, and V and can be satisfied by

x == clx + c
2

c
2

(n-l) == 0

If - 2c
l

t + c
3

U = c48

V = [c
4

+ (n-2)c
1

]ljJ·

These latter eQuations comprise the infinitesimal versi.on (EQs. (1'1) ) of the
full invariance group of the system of equations (7) and (8). That is,

X' = x + c tx + c t + O(t 2) c
2

(n-l) = 0
1 2

t' :::: t + 2C
1

Et + C
2

t + 0((2) (34)
8 ' = e + c 4£8 + 0(e 2)

ljJ' = lj; + [c
4

+ (n-l)c1]tlj; + 0(£2)

where c1 ' c 2 ' c ,.and ~4.are arbitrary constants: . ..
The corresporidlng flnlte group of transformatlons (whlch for thlS slmple

case may be written by inspection) may be derived formally by using the
Lie group generatons. The result is stated with a convenient redefinition
of the translation parameters as

c
x' a

K(n-l) 0 ::: ....£( ec 1 £ 1)= e x + K == K -, - c l

t' e2at .\ .\
c

3 (e 2C
1E: 1) (35)= + a - Clt - -2C l

8 ' ::: eY8 y - c4 E

ljJ' e h + (n-2)a]lj;=

Due to the arbitrariness of the constants cl ' c 2 ' c
3

' and c 4 ' the
latter transformations comprise a 4-parameter group, dlsplaying trans la­
tinal invariance in t, translational invariance in x (restricted to the
one-dimensional version of the governing equations), similitudinous
scale invariance in t and x, and scale invariance in the dependent
variables 8 and ljJ. Clearly, the transformations (34) have ",,4 one­
parameter subgroups. Using the real 4-tuple it, == (c" c , c , c 4) as a
label, each one-parameter subgroup is designated by ~ fi&ed ~ with the

"u
common subgroup parameter £ ranging over the entire real number
scale.

We proceed to determine the classes of one-parameter subgroups that
have Qualitatively different group-space trajectories and consequently
lead to functionally independent self-similar solutions to the original
system nonlinear PDEs.
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It is convenient at this point to combine the original second-order
system of equations (Eqs. (7) and (8) ) yielding the single third-order
nonlinear PDE

l-n a [ n-18S a (8-S a8]
].lX --x - -

dX at ax (36 )

(37)

with the as sociated invariance group of infinitesimal transformations
x' - x + Cl£X + C2€ + 0(£2)

t';:; t + 2c
1

£t + c
2

£ + 0(£2)

8';:; 8 + C4E8 + 0(£2)

For the class of one -parameter subgroups designated by cl =I 0, the
Lagrange characteristic equation (20) becomes

dx
;:; dt

n

Integrating, we obtain the subgroup invariants

(x + c Ie:. F. 2 1
t + C/2C l

f ;:; e
(38)

which are, in fact, the integration constants. Thus, by Eq. (22), the
corresponding general subgroup invariant equation for e , i. e., the
self- similar solution, takes the form f;:; f( n) or equivalently,

8 ;:; (39)

The second class of one-parameter subgroups are designated by cl ;:; 0,
and lead to the Lagrange characteristic equation

;:; ;:;
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(41)

With the further restriction of c 2 -I 0, c 3 -I 0, we integrate the left and
right equations in (40) and again obtain two integration' constants which
are the functionally independent subqroup invariants

n = x - (c
2

/c
3

)t

f = eXP[-(c4/c3 )t]8

The functional form of the corresponding self-similar solution for 8 is
then given by

(42)

Eqs. (39) and (42) comprise the manifold of self-similar solutions to
Eq. (36). By substituting the latter expressions into Eq. (36) we obtain
an ordinary differential equation for f( r)) in each ca se. In the following
paragraphs we restrict our attention to the wave solutions (42) which are
of more immediate physical interest in view of the existing experimental
data. Specific solutions of the type (39) are given elsewhere (Ullrich,
1974)'.

Defining c 2/ c 3 := c as the constant propagation speed, Eo. (42) describes
steadily propagating waves that are uniform (c4/c3 = 0) or
exhibit exponential decay (c4/c3 < 0) or growth (c4/c3 > 0 ).
Since we require Cz f 0, the condition (n-l)c

2
= 0 in (34) restricts

the latter wave solutions to the special one-dimensional, plane-symmetric
case of the governing dynamical equation (36). Furthermore I it is note­
worthy that accelerative wave solutions which exhibit a time-dependent
propagation velocity are precluded by Eq. (42). This is directly
attributable to the fact that the invariance group (34) does not admit
independent scale transformations in x and t.

We will consider two cases of Eq. (42) denoted by c 4 := 0 and c 4 f O.
For the former ca se I Eq. (42) reduces to

8 = f (n ) ,n = x - ct ,

which when substituted into Eq. (36) yield the ordinary differential equation

2
J.lScf'

fL
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2f.lScf' 'f '
f

= o .
(43)



----------

(44)

(45)

(46)

(47)

n = x - ct

[1 - 8/~] < ill < 1.where

f' ~ 0 ~ n -) + DO

appropriate for the Adler band experiments (Adler,1969), the solution to
equation (43) is given by

Supplemented with the boundary conditions *
f~O n-o_ oo

Eqs. (45) and (46) have been shown to be in good agreement with experi­
mental data (Keller and Segel, 1971; Rosen, 1974).

For the case c 4 I 0, we consider the general form of the self-similar
solution (42) I
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f ~ 0

*Similarity reductions generated by the Morgan theory become physically
useful only if the similarity solutions are compatible with the original
auxiliary conditions. This compatibility requirement can be tested by
checking a posteriori whether the auxiliary conditions are expressible I

without inconsistency, in terms of the similarity variables. This will
not always be the case. For example, the simHarity reduction of a PDE
in three variables with two boundary conditions and one initial condition
requires that the original auxiliary conditions coalesce to form two
boundary conditions on the independent similarity variable.

With the definitions (9) through (11), equation (44) begets the explicit
expressions for the bacterial density and substrate concentration
dis tribu tions



where P ::; c4/c3 . Unfortunately, this functional form
prevents satisfaction of a boundary condition germane to the one­
dimensional, plane- symmetric, bacterial-band propagation experiments
(see Adler, 1969), viz.,

e ~ 1 n -t 00
>

t = 0

Nonetheless, traveling wave solutions that exhibit exponential growth
are intuitively physical for the model in question. In fact the classic
example of exponential biological growth is bacterial growth in an
unlimited culture medium where overcrowding effects are precluded.
Thus we propose the alternate boundary conditions

n -t + 00

t > 0

which are suggestive of an experiment wherein a bacterial band originates
at each end of a long capillary so that both bands propagate toward each
other. depleting all of the substrate chemotactic agent behind them.
(Such an experiment has not been performed to date). The ODE for f( Tl) that
results is given by
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(48)

(49)

3
= 2~~cf' If' ~ j.lr:kr~

f f

y(f) - f I (n)

z(f) - y/f

qJ z) - fz'

u(z)
-1

- tl

u' _ ~ _ {(3 _ 2S) + 1[c2
+ (S-1)E]}u2

Z z j.lC

_ {(l-S)z + (c 2
+ (8-1)£J _ ~ + ~}u3 = 0

j.lC j.lZ j.lCZ

)lcf' , r +

Eq. (48) may be reduced to the first-or<ter ODE

by successively imposing the variable transformations



Eq. (49) is an Abel equation of the first kind which for small values
of p (large s) has as its formal solution

fUu u[y(a+12)a(3-2S) z2 + 2apy ]a
~(3-2S) + yu du

0+ fZ
[(1-S)z3 _~ + (3-2Szu ] X

Zo ~ 0

[y(a+l)(3-2S)z2 + 2apy + yu ]adz = const.
2a ~(3-2S) 0

(50)

where y is an arbitrary constant, a is a constant whose admissible
values are prescribed by

-£ ± h~-)+£
2

(3-2S) 2
""(1 Q)c....\ -p

and u and z are constants that may be chosen as is convenient.o 0

CONCLUSION. In conclusion, we have demonstrated the utility of
infinitesimal transformation groups toward systematically arriving at the
manifold of self-similar solutions for PDEs. T~e method is particularly
suitable for nonlinear PDEs because the group-theoretic approach entails
no implicit assumptions of linearity. On the other hand, the richness of
the manifold of self-similar solutions is dependent on the degree of
symmetry exhibited by the governing system of equations. When higher
order nonlinearities are present, the probability of uncovering subtle
symmetries decreases substantially. In the final analysis, the usefulness
of the approach advanced in this paper must be Vleighed intuitively for each
a pplica tion •

139



REFERENCES

Adler, J. (]969). Science, N.Y. 166, 1588.
Ames, W.P. (]972). Nonlinear Part1a1 Differential Eqs.

. in Engineering, Vol. II, Academic Press, N.Y.
Birkhoff, G. (] 9S0Y.. H)idroCTynamics, ] st ed., Princeton

University Press, Princeton, N.J.
B1uman, G.W. &Cole, J.D. (]969). J.Math. Mech.18, No. 11,1025.
Cohen, A. (] 931). An Introduction to the Lie Theory of One-

Parameter Groups, Stechert, N.Y.
Dickson, (]924). Ann. Math. (2) 25, 287.
Keller, E.S. &Segel, L.A. (1971)--. J. Theor. BioI. 30. 225.
Lie, S. (1881). Math. (Kristiana) 6, 328.
Morgan, A.J.A. (1952). Quart. J. Math., Oxford Ser. 2, 250.
Ovsjannikov, L.V. (]969). Soviet Math. Dokl. 10, 538~
Rosen, G. &Ullrich, G.W. (1973). SIAM J. Appl~ath. 24, #3, 286.
Ullrich, G.W. (1974). Ph.D. Dissertation, Drexel U., PEila., Pa.
Woodard, H. , Jr. (1971). Ph.D. Dissertation, University of Iowa.

140



ON UNIQUENESS OF PIECEWISE POLYNOMIAL APPROXIMATIO~

C. K. CHUI. P. W. SMITH. and J. D. WARD
Department of Mathematics

Texas A&M University

ABSTRACT. This paper deals with uniform approximation of
continuous functions by piecewise polynomials. A uniqueness theorem
for placing the knots which balance the error is established.
Counter-examples are also given to show nonunicity for many
functions. Numerical examples are given to demonstrate the
efficiency of piecewise polynomial approximation for certain
functions.

J. INTRODUCTION. Although the ideas involved in piecewise
polynomial approximation are quite elementary. it has been only
recently that much effort has been expended in studying these
approximants. In particular. Burchard [1]. Rice [5], and
Handscomb [2] among Q.thers have 5 tudied various facets of the field.

If we denote by pn the set of functions which have k
polynomial pieces of or~er n (degree < n). then one of our results

is: Let f £ C[a,b] satisfy f(n-1) is strictly monotone. Then

n
f has a unique best uniform approximant from Pk[a.bJ. A weaker

version of this result is stated in [3]. We will give an independent
and complete proof of our result. We also remark that Handscomb

[2] has the following result which is closely related to this above
theorem.

Theorem (Handscomb). If f(n-2) exists and is strictly COnvex in
(a.b]t then the best uniform approximation to f on [a.b] by a
spline of degree (n - 1)(n > 3) with k free knots is unique.
all of its knots are genuine-and distinct. and all its coefficients
8
j

are positive.

Notice that Handscomb's condition (f(n-2) strictly convex) is

essentially the same as strictly monotone. Furthermore.

pO C Sn where Sn is the set of splines of order n with kn
k kn kn

n nknots. It follows that dist (f,Skn) ~dist(f,Pk)' However,

we believe that it is much easier to compute the best approximant to

f
n n

from Pk than from Skn" This computational advantage we feel

justifies further research into piecewise polynomial approximation.

2. UNIQUE BALfu~CED PARTITIO~S. A mesh of order k is a non­
decreasing (k + I)-tuple of real numbers or alternatively it is a
collection of k open intervals I. - (~. l'V,), i - 1•••.• k.

1 1- 1

If u = (uO' .•.• Uk) is a mesh, let k denote the order and X(u)­
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max (u
i

- u
i
_1) the mesh-size of u. A partition is a mesh with nonempty

l<i<k

intervals. If u is a mesh on the open interval (a,b), i.e., ua ~ a

and ~. '" b, then pn(u) is a collection of real functions on (a,b)

whose restrictions to the intervals of u are polynomials of degree at most

n
n - 1. Pk will denote the set of all

most n - 1, whose knots form a kth
1 .i p ~ co. Ie t

piecewise polynomials of degree at

order mesh. If f £ LP(a,b),

E (f,u) = inf {II f - sll (b)p,n p, a,

where u is a mesh on (a,b) and let

E (f,k)( b) = inf {E (f,u): uap,n a, u p,n

By a balanced mesh u of order k, we mean a mesh
property that E (f,I.) = E (f,I

i
) for all I.

p,n J p,n 1

n
s £ P (u)}

= a, Uk = b} •

u having the
and I. £ u.

J

By an optimal mesh u of order k, we mean a mesh u which satisfies
E (f,k) = E (f.u).
p,n p,n

In [1], Burchard studied piecewise
optimal meshes. His primary interest was
asymptotic limits for the error function

polynomial approximation on
to determine bounds and
E (f, k) •
p,n

The purpose of this paper is to exhibit a fairly general class

of functions having a unique best approximant from P~ in Lco(a,h).

We first derive an important relationship between balanced error and
optimal partitions which has special computational implications.

Proposition 1. In LCO(a,b), the balanced error partition exists and is
an optimal partition.

Proof. The existence of the balanced error partition is a
consequence of Lemma 3.2 of [1]. Now suppose the balanced partition
u: (to' "0, t k) is not optimal. Let ul = (La' "', Lk) be another

partition for which E (f,u
1

) < E (f,u). Since u is balanced,CO,n co,n
it follows that II < t l • SimilarlYt LZ < t 2, ···t Lk-l < t k_l ·

But clearly, this is impossible since Eco,n(f,("rk_l,b) ~ Ecotn(f,(tk_l,b)) :::

E (f, u).
oo,n This completes the proof.

We now give an example which shows that in spaces other than Lco(a,b)
a balanced partition need not be optimal.
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Example. Our approximilting m.:mifold in L1 [0,4] is the piecewise
constant functions with one variable knot. Let f be defined as

f(x) =

1

2

hex)

X t (0,2]

x £ [2,3]

x t [3,4)

where hex) has the properties that C = 2 is a best constant
approximation to hex) on [3,4] and II hex) - 211

1
;;:; 4/3. Since

C = 4/3 is a best constant approximant to f(x) on [0,3], the knot
at x = 3 gives rise to a balanced error partition u = (0,3,4) and
E
1t1

(£,u) = 8/3. On the other hand, by choosing the knot at x = 2,

we can select our best approximant to be y = 1 on [0,2] and y = 2
on [2.4] with total error 4/3. Thus, the balanced error partition is
not optimal. We note that we could have made f (.) continuous and still
obtained the same result with only slight modifications in the above
example. We are now ready to state

Theorem 1. If f £ C[a.b] and f(n-1) is strictly monotone on

then f has a unique best approximant from P~

The proof of this theorem follows directly from the following three
lemmas.

Lemma 1.1. If f is as in Theorem 1, a < t
l

< t
2

< band p* is the

(unique) best nth order approximating polynomial to f on (t
l
.t2]

then

= II p* - £ II [t • t J
1 2

i

Proof. Suppose to the contrary, that

(1.1)

Then by the Chebyshev Alternation Theorem. there exist points
ll' •••• In+1 with t 1 < Ll at which

P*(li) - f(l~) = (_l)i L:t. II p* - fll ]
.... [tl·tZ]

Further. by (1.1) we see that

(p* - f)'(T
i

) = 0 i = 1••••• n. Thus. by Rolle's theorem

applied n - 2 times we see that ~here are two points £1 and £2
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i :;; I, Z

strictly monotone.
we replace t l by

But this is clearly a contradiction

(n-1)
f is assumed to be
symmetric if in (1.1)

proof of Lemma 1.

since (p*) (n-l) is a constant and

Of course, the argument is
t z and this completes the

We now obtain two corollaries of Lemma 1 which are needed later.

Corollary 1.1. The functional Eoo n(f,(t
l
,t2)) is a strictly increasing,

function in t z and a strictly decreasing function 1n t l •

Proof. Recall that in the proof of Lemma 1, (f - p*)' cannot vanish
at either t l or t Z. Thus, the assertion of Corollary 1 follows.

Corollary 1.Z. f - p* attains its norm exactly n + 1 times in

[t l , tzl .

Lemma 1.Z. If f is as in Theorem 1, then E (f,k) >E (f,k+l).
oo,n oo,n

Proof. Let to < < t
k

be a balanced (hence optimal) error

partition. Then by adding a new break point, say T, between a and
t
l

, we note that

E (f,(a.T) < E (f.(a,tz)):: E (f,k) > E (f.(T.tl )).co.n co,n oo.n oo.n

by Corollary 1.

enough positive

Hence E (f.(T.tl+El )) < E (f.(a.tz)) for smalloo.n oo,n
E
1

. But then, appealing to Corollary 1 again,

E (f.(tl+£l,tZ)) < E (f,(a,tl ))co,n oo.n

and so there exists an £2 > 0 such that

Continuing in this manner, we produce a new partition
{to.T.tl+El' ••.• tn-l+£n-l,tn } '" 1T so that

E (f,k+l) < E (f.1T) < E (f.k).
co.n - co.n co.n

This completes the proof.
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Lemma 1.3. The' only optimal partition is the balanced error partition.
if f=r5 as in Theorem 1.

Proof. Let u =(to' ... , t k) be an optimal balanced partition for f.

Suppose that there is another partition u
l

= (TO' •..• T
k

) which is also

optimal for f. Then by Corollary 1. it follows that T
1
~ t

l
, •.•• T

k
_

1
2

t k_l • Reapplying Corollary 1. one obtains that T
k

_
1
~ t

k
_

1
•••• , L

1
~ t

l
•

This proves the lemma.

Proof of Theorem 1. Lemma 3 guarantees the existence of a unique
optimal mesh. namely the balanced error,partition u = (TO' •.•• Tk)'

Since on each interval [Ti • T
i
+l ] i = O••.•• k - 1 the best approximating

polynomial of order n is unique, the best piecewise polynomial
approximation p* is unique. We require p* to be right continuous at
each Li to make p* well defined at the knots. The proof is completed.

The following is a consequence of Theorem 1.

Corollary 1.3. If f satisfies the hypotheses of Theorem 1 and k~ 1.

then the (unique) best approximation to

only if n is even.

f from pn is continuous if and
k

Proof. By Lemma 1, the error II f - p*11 is attained at the knots.

Thus. one only needs to check whether

match up at t.
).

p* I[to l.t.]
~- ~

or are on opposite sides of f.

and

3. NUMERICAL PROCEDURES. In order to find the optimal knots of the
best piecewise polynomial approximant to f, we tried several variants of
schemes suggested in [4]. The method suggested there is a fixed pOint

i t . h M . f . 11 1 t (m) - ( (m) (m) ) btera ~on se eme. ore spec~ l.ca y e u ;: uo ) .•.• uk e

the partition at the mth step in the iteration procedure. One then may
adjust the knots according to many criteria. We compare three methods.

(I)
(m)

:: u. + C[E (u .• u.+1 ) - E (u
i

l'u.)]
~ 00, n ~ ~ lXI, n - ~

= 1•...• k - 1 ..

(II) Set:

i

A(ro) ::
i

Then set:

i = 1, ••• ) k - 1

(III) Set: B~m) ""
~

(l/i) \' n
Ljt=n-i+l
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Set: v(m) (Ill) + cii(-B~ + B~)i
.. u

i

Z(lIl) .. um + c'i(~m) _ A(m»
i i i i

1 .. I, .... k - I

Set: u(m+l) .. (v(m) + 1'~m»/2 i .. I, •••• k - 1.1 1 1.

In all the above schemes. it is assumed that the n~~bers ci
i .. 1. _•• , k - 1 are positive. It is clear that the balanced error
solution is a fixed point of all the above schemes. In [4J it is
shown that these schemes will converge to a fixed point provided the ciare ehosen small enough.

i" the

I, II, and III

where M(l/M)[uk - uOJ

then the method"

if c
i

.. c <

E (t
l
,'),

"',n
converge. However, the choice of the ci is delicate since too small a

ci will converge ve~y slowly and too large a c
i

will fail to converge.

Specifically,

Lipshitz constant of

We found that a convenient conservative estimate for

approxilaant to

I(p! - f)'(ui)l-
l

f on (ui,ui+l ).

where p*
1

is the best polynomial

A simple Remes exchange algorithm is used to compute an apprOXimation
to the best polynomial approximant to f on each of the subintervals.
Our experience has been that method III generally produces the best ;esults.
This should not be surprising since it adjusts the knots according to the
global error (as does II) and secondly, it is not dependent on whether one
.tarts from the right or left endpoint as is method II.

The following table typically illustrates the behavior of the methods.
;)

This table represents the results in trying to apprOXimate F(x) = jx/ on
[-3,2] by pieceWise linear polynomials.

Method Number Iterations Error
of KnOts

I 1 37 2.556
II 1 201 2.561

III 1 91 2.556

I 2 106 1.2929
II 2 201 1. 2935

III 2 117 1.2929

. 3 201 0.6367...
II 3 247 0.6376

III 3 83 0.6377

1 4 420 0.4287
II 4 337 0.4274

111 4 102 0.4303
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These results are quite representative of the relationships between
the methods. In general, for 1 knot (independent of degree) method
I appears to be much faster than II or III. Method III nearly always
beats method II and after 1 or 2 knots easily outdistances the other
methods.

The authors would like to express their gratitude to Robert
Strader who did much of the programming.
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Linear Generalizations

of the Gronwall-Reid-Bellman Lemma

Jagdish Chandra Paul Wm. Davis

U. S. Army Research Office
Research Triangle Park, North Carolina

An investigation of uniqueness or continuous dependence on

boundary data for the system of nonlinear equa~jons,

(1) wxy = F(x, y, w),
o 0w prescribed on x = x , y =y ,

where w is a vector and F is a matrix which is Lipschitz con­

tinuous in w, reduces to a study of integral inequalities of the

general form

(2)
f
x fYu(x, y) ~ a(x, y) + G(x, y) H(s, t)u(s, t) ds dt.
XO yO

Here a is a vector determined by the boundary conditions and G

and H are continuous matrices with nonnegative entries.

Inequality (2) is an analog for systems in several independent

va ri ab1es of the Gronwa 11-Rei d-Be 11 man i nequa1ity used in the theory

of ordinary differential equations, e.g. [Po Hartman, Ordinary Dif­

ferential Equations, Wiley, p. 24J. By manipulating the resolvent
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kernel of the integral operator on the right side of (2). we have

obtained the upper bound required to establish uniqueness. continuous

dependence. etc. for the system (1) of partial differential equations:

Theorem: If u(x. y) satisfies (2). then

fx fYu(x. y) ~ a(x. y) + G(x. y) V(x. Y; s. t)H(s. t)a(s. t)dsdt.
XO yO

where V is defined by

V(x. y; s. t) = I + fX fY H(p. q)G(P. q)V(P. q; s. t) dp dq.
s t

The restriction to merely two variables is not essential.

The proof of this theorem is simpler and the result more general

than that of O. R. Snow [Proc. Amer. Math. Soc. ~ (1972). 46-54J and

E. C. Young [ibid. !L (1973). 241-244J. who used a differential-initial­

value approach. In several special cases, the matrix V can be com­

puted explicitly, thereby recovering a number of earlier results.

including the classical. single-variable. scalar lemma of Gronwall.

Reid, and Bellman.

The discrete analog of (2), which arises in the numerical solution

of the system (1) of partial differential equations by Euler1s method,

can be treated similarly.
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A METHOD FOR THE NUMERICAL SOLUTION OF TWO-POINT BOUNDARY
VALUE PROBLEMS BASED ON THE USE OF VOLTERRA INTEGRAL OPERATORS

H. Fujita
University of Tokyo, Japan

L. B. RaB
Mathematics Research Center

University of Wisconsin-Madison

§o. Abstract. Suppose that a given two-point boundary value problem to
be solved is a perturbation of one for which a considerable amount of analytic
information is available, in particular, the Green I s function of the unperturbed
problem is known. In this case, one can construct an analytic method for the
solution of the perturbed problem which involves only the solution of a Volterra
integral equation. Discretization of this method, which is a version of the
cIa s sical "shooting" procedure, leads to a numerical technique fOl the solution
of perturbed boundary value problems. Under suitable assumptions, convergence
of the numerical method will be established, and estimates will be obtained for
the rate of convergence. Attention will be devoted to the cases in which the
unperturbed differential operator is regular or mildly singular. Linear problems
will be considered first, followed by an extension of the method to the non­
linear case.

AMS(MOS) Subject Classifications - 34B05, 34615, 45B05, 45D05, 45G05,
45G99, 45L05, 45110, 6SR05

Key Words - Boundary value problems, Fredholm integral operators, Volterra
integral operators, Nonlinear integral equations, Numerical
solution of integral equations

§l. Preliminaries. This section is devoted to some basic information about
regular Sturm - Liouvillie boundary value problems. For more details, the books
by Ince [ 3] or Yosida [10] may be consulted.

1. 1. The regular Sturm-Liouville operator. for the sake of definitenes s,
attention will be confined to boundary value problems posed on the real interval
I ;;; [0,1]. The symbol La will denote the formally se1f~adjoint Sturm-Liouville
operator defined by

(1.1)

for all sufficiently smooth functions cp;:: cp(x), where P, Q are smooth, real
valued functions of x on [0,1], and a positive constant 0 exists such that

Sponsored by the United States Army under Contract No. DA- 3l-lZ4-ARO-D-462.
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(1. 2) P(X) ..2:: 6 > 0, x E 1.

The boundary conditions to be considered in this part of the paper are the
homogeneous conditions

(1. 3)

or

(1. 4)

u(O)=O, u(l) =0,

for positive 0- ,0-
1

, unless some other conditions are explicitly stated.
In orde~ to construct the Green's function and corresponding integral

operator, suppose that qJ = qJ(X) , ljJ = Lfi (x) are functions such that

(1. 5) LOqJ = 0, qJ(x) satisfies the boundary conditions at x = 0,

(1. 6) LOlj; = 0, lj; (x) satisfies the boundary conditions at x =1,

and their Wronskian

qJ(X) ljJ(X)

(1. 7)

qJ'(X) lj;'(x)

doe s not vanish on the interval [0, 1]. The existence of functions qJ, lj;
satisfying conditions (1. 5) - (1. 7) is equivalent to the existence of a
bounded inverse of the differential operator La subject to the given boundary
conditions in some space such as C(I) or L

2
(1), I=:[ 0, 1]. Further, as
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it follows that

P(X)W(lf,ljJ) = constant

for x E [ a, 1], and this constant value may be taken to be

(1. 8)

for some x a E [ a, 1].
The functio ns If, ljJ maybe US sd to con s truct the Gree n I s function

G(x, y) for the differential operator La and associated boundary conditions.
One has

(1. 9) G(x, y) :.

1
If(X)~(Y), x ~ y,ma

where ma = P(y)W(lf,l~)y is independent of y. By considering the
1

operator rnO L
O

instead of La' one can assume without loss of generality

that rna :. 1, and the Green I s function is of the form:

(1. 9) I

{

If(X)lHY),

G(x, y) ::;

~ (X)lf(Y),

x.sy,

The function G(x, y) is evidently continuous in the square I X I.
However, it is not regular at x::; y. In I X I - A, where A ::; {(x,x) IXf I}
is the diagonal of I X I, the smoothnes s of G is determined by the differ­
entiabilityof If and ~. In particular, if PE C:<,tl(I) and Qf CQ/(I) for
some Q! 2: a, then If, l~ E cat 2(1). The following lemma will be useful later.
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Lemma 1. L Let LO be a regular Sturm-Liouville operator assofiated
with certain boundary conditions. Assume that Lol exists, where La is
given by the Green operator tIi, which is the integral operator defined by

1
(tIif)(x) :: J G(x, y )f(y )dy ,

o
the kernel G(x, y) being the Green's function. Moreover, assume that
PECa+l(I) and QECCl'(I) for some a~O. Then

for any ~ such that 0 < ~ < QI.

1. 2. Dec..Qmeosjtion of the operator (S. It will be shown that the
Green operator ([i may be expressed as the sum of a certain Volterra operator
'W, as sociated with LO' and an operator of rank one. To construct the
Volterra operator, consider the following initial value problem:

(1.10 )
{

LO :: f,

u(O) :: u'(O) :: 0 •

The solution of this problem may be expressed in the form

(1.11)
x

u(x) :: J V(x,y)f(y)dy::;: (Wf)(x) .
o

An explicit representation for V(x, y) oan be given if one knows two
solutions cp, 4J of LOu:: 0 which are independent in the sense that their
Wronskian does not vanish. The standard way to do this by the variation of
pC;lrameter formula [10] is to assume that V(x, y) has the form

{

0
V(x, y) ::

alP (x) + ~4J (y) :: h (x),
y

y<x,

and then determine Cl':::: Cl'(y) , ~:: ~(y) so that

{

h (y)

-P(Y)h~(y)
y
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that is, so that LOh ::: 6(x-y) in terms of the Dirac 6-function [2]. This
leads to the equatiorts

cap + 131.J; ::: 0,

acp' + I3ljJ' :::
1
p'

for 0:',13, and the corresponding solutions

a(y)"GJ .:;:...;lHI..L...Y'--)_

W(cp, ljJ) - P(y)W(cp, ljJ)y

I3(Y) :::

This gives

(1. 12) V(x,Y) ;;;

a

l [cp(x)ljJ(y) - cp(y)ljJ(x)], y <x,
mo

where rna is the constant defined by (1. 8). As before, the operator

~o L
O

could be considered in place of L
O

' and one can thus assume that

m ::: 1 without los s of generality.
o Remork 1.1. It is possible to make an alternative derivation of (1.12).

Suppose that f E C[ 0,1] and c E Rl is a real number. It follows that
u ::: Wf + c cp is a function satisfying LOu::: 0 and the boundary condition
at the left endpoint x:::: O. The method of "shooting" [4] consists of the
determination of the value of c for which Wf + ccp is equal to (bf. It is
easy to see that the value c::: c(f) determined in this way is a linear
functional of f which is continuous from L2 into RI. Thus, by the Riesz
representation theorem [2, p. 20], an element ljJl E L2 exists such that
c(f) ::: (f, 4Jl)' The relationship
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(1.13 )

for all f E L
2

is equivalent to

(1.14) V(x, y) + <P(x)lj;l(Y) ::: G(x, y)

for all x, Y in [0,1]. If x < Y, this implies that

<P(x)lj;l(y) ::: G(x, y) ::: <p(x)lj;(y),

and thus

Using the symmetry property of G(x, y), one gets

V(x, y) + <p(x)lj;(y) ;:;; G(x, y) ::: lj;(x)<p(y), x > Y,

hence

V(x,Y) ;:;; lj;(x)<p(y) - <p(x)lj;(Y) .

Remark 1. 2. It follows from the preceding observation that

(1.15) <Fif ::: \Vf + (f,lj;)<p ,

where <P, lj; are the functions appearing in the representation (1. 9) I of G(x, y).
Remark 1. 3. Equation (1.15) shows that the Green operator a;, which

is an integral operator of Fredholm type, is obtained from the Volterra operator
\V by a perturbation of rank one. In this sense, \V is close to a;. However,
\V and <G differ in one essential respect: (II ~ t-. \V) -1 exists as a continuous
operator in C(I) or L2(1) for all t-. (even complex t-.), whereas (1I-t-.a;)-1
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does not exist if A. is an eigenvalue of the operator G. (ll denotes the
identity operator in the space considered.) This fact will be exploited later.

1 .3. Voltel.~.ra integral operators. Some well~known properties of
Volterra integral operators will be summarized here for later reference. It
will be supposed that the operator "II is represented by a kernel V::: V(x, y)
which is continuous on the triangle {(x, y) 10 .:s. y .:s. x .:s. l}. One sets
V(x, y) = 0 for y > x. Furthermore, let

(1.16) f.L = max IV(x, y) I
O~Y:S.x~.1

The nth iterate ~ of the operator V will have the kernel

x
V(n) (x, y) = f V(n-l) (x, t)V(t, y)dt, Y ~ x ,

y

with v(l) (x, y) = V(x, y). The following result is easily established by
mathematical induction.

Lemmal.Z. For M defined by (1.16),

(1.17)
n-l

IV(n)( ) J n (x-y)
x, Y .:s. f.L (n-l)!' y ~ x ,

n == 1, 2, .. " where V(n) (x, y) is the nth iterated kernel of V(x, y). In
particular,

(1.18)

where /I II denotes the operator norm on C(I) or L2(1).

The iterated kernels are defined to be zero for y > x.

Corollary 1. 2.1. The Neumann series

(1.19)
-1 2

( 1I- "0/) == II + V + V +...

converges in the operator norm, with

(1. 20)
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(1.21)

then

(1. 22)

Remark 1.4. If

Iv(x, y) I ~ fl
1

(x-Y), Y ~ x ,

__ 2n~]

t
Iv(n)(x ) I < n (x-y) y _< x ,

,y - fl] r(2n) ,

II ~ II ~ f.l7 q2~tl)'

n := 1,2, ..•.

In this case, the estimate (1. 20) can be replaced by

(1.22)'

For Volterra operators arising from a regular Sturm-Liouville operator L
O

'
(1. 21) and consequently (1. 22) - (1. 22)' hold.

1. 4. Degenerate 2§rturbation of Volterra integral operators. Consider
a Volterra integral operator 'If with kernel V(x, y) as defined previously,
and a degenerate operator :B of finite rank m defined by

m
$u:= I: (u, l);.)<P. ,

j := 1 J J

where rp., l);. are given linearly independent functions in C[ 0, 1]. The
operator J J

lK= '1ft $

is called a degenerate perturbation of the Volterra integral operator V. The
following notation will be useful: The operator

always exists by the previous results. For rp., l);, i, j ::: 1, 2, ... , m
continuous, one may define the matrix A = (a~.) 1 by

1J

a.. ::: (l);., ]Trp,)
1J 1 J
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The letter d will be used to denote the determinant d:::: det(I -A),
where I is the identity matrix of order m. The following thlrorem is
a speciafcase of a famous result for linear integral equations.

Theorem 1.1 (Fredholm Alternative) • Consder the equation
.4

(1. 23) u - TI<u ::: f, f EX,

where X is either C(I) or L
2

(1). Either (1) d 1- 0, and (1. 23) is
uniquely solvable for any f E X, or (ii) d ::: 0, in which case the
homogeneous equation

(1. 24) u ~ lKu :::: 0o 0

has nontrivial solutions. (That is, 1 is an element of the point spectrum
cr (IK), in other words, an isolated eigenvalue of nC)

p

Proof. Since IT - V and IT are both continuous, equation (1. 23)
is equivalent to

(1. 25)

By definition,

u - ]J$u ::: JI£ .

m
::: ~ (u, lj;. )JJcp .•

j ::: 1 J J

Setting V
j

::: (u, l~.),
J

== 1, 2, .. II • , ill, (1. 25) becomes

(1. 26)

and since

m
u - ~ V.]J<p, - ]Jf ,

. 1 J 1
)==

one has

(u, lj;.)
1

m
::: ~ v.(lj;., JJcp.) :::

. 1 ) 1 JJ :::
(TIl, lj;.) ,

1

(1. 27)
m

V. - ~ a .. V. :::;
1 . 1 1) )J :::
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i = 1,2, 0 •• , m. If d j. 0, then (1. 27) determines the values of
"YI' "Y

Z
' """Y

m
uniquely, and the uni.que solution u of (1. 23) is determined

correspondingly from (1. 26), that is

(1. 28)

m'~

u -- ~ y]Jep + JJf .
, 1 ])=

If d::: 0, then the homogeneous equation

(1. 29)
m
~ a.,"y, ::: °

j :::: 1 lJ )

will have nontrivial solutions belonging to some r-parameter family.
Corresponding to this, (1. 24) will have the r~parameter family of nontrivial
solutions

(1. 30)

§2. Regula£~~Jurm-Liouvilleproblems perturbed by lower order terms.
The operator La will be considered to be a regular Sturm -Liouville operator
with as sociated boundary conditions of the type considered in §1. Here,
attention will be devoted to equations of the form

(20 1)
du

-LOU + p(x) dx + q(x)u = £1 '

subject to the boundary conditions

u(o) :::: u( 1) - 0 ,

or

{

u1(O) - o-ou(O) :::: a ,

u'(l) - 0- u(l)::: 0,
1

where 0-
0

, ()1 > 0 are given constants. The differential operator M is
defined by

(Z. 3) Mu
du

::: p dx + qu .
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(2.4)

Equation (2.1) will be dealt with from the standpoint that the operator L
O

is perturbed by the operator M of lower order.

The functions P, q entering into (2.3) are assumed to be smooth.
In particular, if P E: CQI+l, Q E: Ca , a 2: 0, and one assumes likewise
that p E Ca +l, q E: Ca , then it follows from f

l
E CI3 that u E CI3+2

for any 13 such that 0 S. f3 s.QI, where u is any solution of (2.1).

Equation (2.1) and the corresponding boundary conditions may be
transformed into equivalent integral equations by means of the Green's

-1 )operator (]; = L
O

and the corresponding Volterra operator V = (]; - ( ,y; cp

as defined in §l. First of all,

u - (];Mu = f, where f = -(];f
l

.

This is equivalent to (2.1) and (2.2)0 or (2.2)1' Next,

(2. 5) u - VMu - (Mu, y;)cp = f ,

which is equivalent to (2.4) and hence to the original boundary value
problem. By using the definitions of <Ii and V, it can be checked
directly that any solution u of (2.4) or (2.5) will satisfy the boundary
conditions, and also the differential equation (2.1).

Before a general treatment of equation (2.5) is given, two special
cases will be considered.

Case 1. p:= O. Here, one sets

{
V(~.' y) = V(x, y)q(y) ,

(2.6) ._
y;(y) = q(y)Lj;(y) ,

and obtains the corresponding equation

(2. 7)
x

~ ~

u(x) - J V(x, y)u(y)dy - (u, y;)cp(x) ;;;: f(x) .
o

In this case, V(x, x) ;;;: 0. One has:

Proposi tion 2.1. Equations (2. 5) and (2. 7) are equivalent.

CaseII. The boundary conditions (2.2)0 hold. By integration by parts,
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x IY:::::X x aJ V(x, y)p(y) ~u dy ::::: V(x, y)p(y)u(y) - J oy {V(x, y)p(y) }u(y)dy
o y yo: 0 0

x 0::: - f a {V(x, y)p(y) }u(y)dy ,
o Y

since the first term vanishes at y::: X because V(x, x) ::: 0, and at
y ::: 0, one has u(O):::: O. Also,

1 d 11 1J p(y) d~ ljJ(y)dy ::: p(y)u(Y)ljJ(Y) - f u(y){p(y)ljJ(Y)}'dy
000

1
::: - f u(y){p(Y)ljJ(Y)}'dy,

o

since u(O)::: u(l) ::: O. Thus, for

ljJ(y) :::: - {p(Y)ljJ(Y)}' + q(y)tp(y) ,

(2.8)

one obtains

V(x, y) :::
a
ay {V(x, y)p(y)} + V(x, y)q(y) ,

(2.9)
x

u(x) - f V(x, y)u(y)dy - (u, ~)(,O(x) ::: f(x) ,
o

an equation of the same form as (2.7). From the above derivation, one has:

Proposition 2.2. Equations (2.5) and (2.9) are equivalent.

Case III. Reduction of the general case to a system of simultaneous
equations. This is similar to the standard procedure for the conversion of a
differential equation of arbitrary order into a system of first order equations.
One sets

Equation (2. 5) may be written in terms of u and v as
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x
u(x) - r V(x, y){p(y)v(y) + q(y)u(y) }dy - (pv + qu, ljJ)rp(x) ::: f(x) ,

o

since Mu::: pv + quo Differentiating this equation with respect to x
and making use of the fact that V(x, x) ::: 0 gives

x
v(x) - J

o
VI (x, y){p(y)v(y) + q(y)u(y) }dy - (pv + qu, ljJ)rp'(x)

o
I where VI(x, y) ::: AX V(x, y) .

::: f'(x) ,

The two equations above can be combined into a single vector equation for
w. Set

'" (V(X, y)q(y)
V(x, y) :::

VI (x, y)q(y)

V(x, y)p( y) \

VI (x, y)p( y) )

Then

::: (q(Y)4J(Y)) ,
p(y)ljJ(y)

~(x) ::: (rp(X)) £(x)
cpr (x) ,

::: (f(X))

f'(x)

(2.10)
x

w(x) - f V(x, y)w(y)dy - (w, ~) ;(x) ::: f(x) ,
o

'"
where (w,4J) denotes the inner product

1 (q(Y)ljJ(Y) )
(w, ~) ::: J (u(y) v(y)) dy .

o p(Y)ljJ(Y)

The following result is evidenL

Proposition 2.3. Equations (2.5) and (2.10) are equivalent.

Case IV. Another treatment of the general case. If one sets
w = Mu, then equation (2. 5) becomes

(2. 11) u - Ww - (w, ljJ)rp ::: f .

163



Operating on (2. 11) with M give s

Thus, for

V(x, y)

;(x)

'"f(x)

o
'" p(x) --;- V(x, y) + q(x)V(x, y) =: M V(x, y)

vx X

= Mcp(x) = p(x) ~ + q(x)cp(x) ,

df= Mf(x) "" p(x) dx + q(x)f(x) ,

one has the equation

(2.12)

which is of the type (2. 5). In order to recover u from a solution w of
(2.12), it is not necessary to solve the first order differential equation
w = Mu for u. Instead, one has directly from equation (2.11) that

(2.13)

and thus:

u = Ww + (w, 4J) cp + f ,

Proposition 2.4. Equation (2.5) is equivalent to the system of
equations (2.12) and (2.13).

In general, then, one only has to solve an integral equation of the form

(2.14) u - Wu - (u, ~); = f ,

where W is a regular Volterra integral operator and ;L~' ans!, _~ are
given smooth functions. In order to solve (2.14), put JJ = (IT - W) , which
always exists. It follows that (2.14) is equivalent to

(2.15)

or to the system

{

u = y]J; + ]Jf
(2.16)

[1- (]J~,~)]y = (jrf,~),

N N~ NN

for y = (u, lj;). Thus, after ]J cp and ]J f have been formed, one finds
the solution u of (2,15) directly from (2,16), provided that

(2.17)
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§3. Numerical solution. The solution of an integral equation of the form

( 3.1) u - Wu - (u, llJ)cp ::: f ,

where V(x, y), cp(x) , l~(X), and. f(x) arc given smooth functions, may
be broken down into the following stepso First, one solves the linear
Volterra integral equations

( 3. 2)

for the functions

(3. 3)

The inner products

<;P - \Yw ::: Cp, F - \YF - f

<J> (x) ::: lfcp(x) , F(x) - m(x) .

(3. 4)
1

(tIl, l~) ::: I tIl (X)l~(x)dx, (F,~)::
o

1
I F(x)~(x)dx,

°
are then calculated, which leads to the scalar equation

(3. 5)

for the constant

( 3. 6)

[1 - (w, I.jJ)J'{ :: (F, ly)

'{ :: (u,~) 0

Assuming that 1 - (tIl, ~) "* 0, so that (3.5) is uniquely solvable, one
obtains the solution u(x) of the original equation (3.1) in the form

( f ,I,)
(3.7) u(x)::: F(x) + ''t' ep(x) 0

1-(<J>,1.jJ)

In general, one would not expect to obtain explicit representations
for the functions F(x), <;!:> (x), and the integrals appearing in (304). This
leads to the consideration of a number of procedures for obtaining approximate
solutions. For example, since the Neumann series for JJ::: (ll - V)-l is
convergent, it is natural to try to obtain the values of (3. 3) and (3. 4) in
terms of infinite series. Another approi:1ch, the one which will be considered
in this paper, is to use numerical integration (Nystrom's method) for the
solution of the integral equations (3.2) and the evaluation of the integrals
(3.4). (It is not necessary to use the same rule of numerical integration for
each purpose.) Once again, the smoothnes s of the functions involved leads
to the possibility of obtaining fairly accurate results by numerical integration.
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This is in contrast to what may happen if the Nystrom method is applied in
a straightforward fashion to the Fredholm integral equation

(3.8) u - <Ilu 0:: f ,

as the singularity in :t G(x, t) at x:::: t may affect the accuracy of a
given procedure for numerical integration [1, 7) .

Convergence of this method of numerical solution will be proved
under fairly mild restrictions concerning the quadrature formulas' to be
used. It will be assumed that the interval [0,1] is partitioned into N
subintervals by means of the points

It is not essential that these subintervals be of equal length; however,
the lengths of these subintervals should go to zero uniformly as N .~.. 00.

As usual, one sets

(3.9) f. :::: f(S.), cpo ::; cp(S.), lfJ. :::: lfJ(S.) ,
1 1 1 1 1 1

i :: 0,1, ... , N, and one seeks approximations u~ to u(s.) by replacing
(3.1) by a finite linear system of equations. This \:iiscretizabon is
accomplished by the introduction of quadrature formulas

(3.10)

to approximate

and

N
N ~' N N(u "I.) ;;;; C U ,I,

't' j j 't'j
j=O

1
(u, lj;) = J u(x)lj;(x)dx ,

o

( 3.11) N N
K.. u.

1) )

i

- ~
j:;:O

C~V(S., ~.)u~
1) 1 -) )

as approximations to the integrals

S.
1

J V(;.,y)u(y)dy,
o 1
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N N
i - 0,1, ... , N. The values of C" G, depend on the specific numerical

) 1J
integration rules used. This leads to the system

( 3. 12)
i

N ,\\ N N N
u, - l, K u -. \/ U ,I,) (f)

'-' ". ,'t' N"-'
1 . 0 1) ) 1

J:;:

f
i '

i:;: O,I, ... ,N, for uN :;: (uN,uN, ... ,u~). The prescription for solving
this fin.ite system is essentiaPly t~e same as for the integral equation (3.1).
As in [7], one solves the lower triangular systems

( 3.13)
i i

F
N _ \ ' KNFN

-C" f" '"' N \' KN"" N, Li '" -.., - LJ ,,'>1:',- if. ,
1 j :::: 0 1J J 1 1 j '" 0 1J J 1

i :;: 0,1, . .. , N for F
N

'C (F~, F~, ... , F'~), q,N - (q,~, <t>~, ••• , w~),
forms the inner products

N
N N N

(F ,4J)N - \' C, F. 4J.- LJ
j:;:O J J J

( 3.14)

N N, N N
(l.P ,4; )N - ~ C, <1>, \~,

):;:0 J J J

Then, if

and

( 3.15)

(3.16)

the solution of (3.12) is given by

uN _ FN + '1N¢lN

where

(3.17)
N

'I ~-

N
(F , 4J) N

1 - (cI?N, l~)N

Notice that it is no t necessary to evaluate the inner product
directly.
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N
Ordinarily, one has V(x, x) = 0, which implies that K.. .:::. 0,

i- 0,1, ... , N. In this case, the amount of arithmetic require~J to obtain
the solution (3.16) of (3.12) has been shown [7] not to exceed one division,
N 2 + 4N + ~ multipLications, and Nt -t 4N + 4 additions. The following
arguments may be modified easily to handle the case K~ *- 0, at the
possible cost of ~(N2j "iN + 5) additional divisions. l~1'lliS modificiltion
will be indicated at the end of this section.

The follOWing as sumption will be made concerning the quadrature
formulas used in (3.11) and (3.14): A constant 0', independent of N,
exi s ts such that

(3.18)
0'

N'

o :s. j s. i S. N. Since it is assumed that

IV(x, y) I .s fJ. ,

this in turn implies

(3.19) IKN I < Ql!
ij N'

o S. j < i <: N. These inequalities may be used to obtain a uniform bound
for the inverse matrices

( 3. 20)

where IN denotes the identity matrix of order N + 1, and K
N

is the
strictly lower triangular matrix with elements

( 3" 21) (KNl.
1J

'- { 0,

K~,
1J

0< <i<N

For this purpose, it will be convenient to introduce the norm

(3. 22) 1/ z II ., max
(0

Iz. j
1

N I I
for vectors z - (ZO' 21' .. " ZN) in the space R of (N+I)-dimcmsional
real vectors. The corresponding bound 111'1.11 forrealmatrices 1'1.-- (A.,) of
order N + 1 is 1)
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(3.23)
N

IIAII ::0 max L:
(i) j:::O

IA.. I
1J

It may be no ted that the inner product <, >N _ defined by (3.10) may

II II J -Nt! N
be used to obtain the norm z = <z, z)~ on R , provided C. > 0,
j ::: 0,1, .. " N. This norm and the corresponding matrix norm will bd
equivalent to (3.22) and (3.23), respectively. For computational purposes,
(3.22) and (3.23) have the advantage of simplicity.

Lemma 3.1. Let 8::: (8 .. ) be a strictly lower triangular matrix of
d N 1 . h 1 IJor er + WIt e emen ts

O<j<is.N.
B

ij
= [bO:
~ 1)

Furthermore, assume that a constant \. > 0 exists such that

( 3. 24)

(3.25) Ibijl~\.,

o < j < i S. N. Then, for any vector z E:: R
N

+l and any positive integer p,

(3.26)
p

< L i(i-l) ... (i-p+l) II z II ,
p!

i :.: 0, 1, ... , N. Thus,

(3. 27)

and

( 3. 28)
\.N

< e

Proof: Inequalities (3.26) will be established by mathematical
induction on p. Note that it follows from (3.26) that

(3. 29)
p

(8 z). ::0 0
1

for 0 ~ i < p. For p::: 1,

(8z)0 ::: 0 ,
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and

i-I
(Bz), :; ~ b'jZ' ,

1 j:::O 1 J

i :::: 1, 2, ... , N. Thus

i :; 1,2, ... , N. This verifies (3.26) for p:; 1. Assume that (3. 2f) holds
for p;; m· Once again, one has

Also, for i = l, 2, .. , , N,

so

(3. 30)

Actually,

i-I i-I
L j(j-l)"'(j-mtl)= ~ j(j-1)···(j-m+l).

j=O j",=m

Another application of mathematical induct-ion wUl be made to show that

( 3. 31)
i-I

(mtl) ~ j(j-l) ... (j-mtl) == i(i~l) ... (i-m)
j =m

for all posHiv€l integers i 2: m + 1. For i == m t 1, both sides of (3. 31)
reduce to (mt1)!, and thus it is valid initially. Assuming that (3.31)
holds for some positive integer i = n ~ m + 1, one has
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n n-l
(mtl) ~ j(j-l)'" (j-mtl) = (mtl)n(n-l) ..• (n-mtl) + (mtl) ~ j(j-l)'" (j-mtl)

j=m j:::m

~ (mtl)n(n-l)'" (n-mtl) + n(n-l) ... (n-m)

::: (ntl)n(n-l) ... (n-mtl) ,

which is (3. 31) for i::: n t 1. This completes the "inside" induction.
From (3.30) and (3.31),

mtl
I(Bmt1Z)i I ~ (~+l)! i(i-l) ... (i-m) liz II

which is (3.26) for p::: m t 1. This completes the "outside" induction and
shows that (3.26) holds for all positive int§:!gers p. Inequality (3. 27)
follows immediately from (3.26). Since BN+!::: 0, B is nilpotent, and
(IN-B)-l always exists and is given by the finite Neumann series

-1 2 N
(IN- B) ::: IN t B t B t··· + B .

Hence,

00 p
II BP II < \,' (AN) ::: eAN

- LJ pI '
p=o '

N
tlJ ,

which proves (3.28). This completes the proof of Lemma 3.1.

Lemma 3.2. For the matrix~N defined by (3.21), one has

(3.32) II TN II :: II(IN-KN)-lll ~ eO:~

for all positive integers N.

Proof: This follows immediately from (3.19) and Lemma 3.1, as
one may take A.::: o:~/N.

Thus, it is always possible to solve equations (3.13) for F
N

and
furthermore,

(3. 33)
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uniformly in N for bounded, Riemann~integrablefunctions f(x), <p(x).
Actually, it will not be a particular handicap to restrict the following
discus sion to continuous functions, and use the symbol II II for the norm
in RNtl and C(I), as its significance will always be clear from the
context. In fact, some error estimates for various methods of numerical
integration involve derivatives of the integrand. To use such estimates,
the class of functions considered has to be restricted to those which are
sufficj.ently smooth, and bounds for der.ivatives of these functions would
enter into the definition of the norm.

The following assumptions will be made concerning the rates of
convergence of the quadrature formulas used:

(3. 34)

1
/ h(x)dx - ~ C~h(g,) I ~ £ (N) IIh II ,
'0 j ::: 0 J J P P

~. .

I
lIN !

jh(x)dx- ~ C"h(S,) ~£(N)llhll .,o j:::O 1) J -(T 0,1

where £ (N), £ (N) are called the rates of convergence of the integration
form ul a s ,P with 0-

(3.35) lim
N -.. (XJ

£ (N) =­
p

lim
N --.. 00

£ (N) :::
u-

o ,

(it is assumed that £ (N) is independent of 1), and II lip, II II , are
suitable norms, the lalter being defined on the interval [O,~.J. 0,1

1

Lemma 3. 3. Suppose that h(x) and V(x, y) are smooth in the
sense that

(3. 36) II V(x, . )JJh II '~~l(JJh),
o ,1

uniformly in L Then,

(3.37) I(JNh)i - (JJh)(~i) j ~ £o_(N)~l(JJh)ea~ .

In particular, if {iN} is a sequence of positive integers such that

lim ~. - ~ ,
N --->- (XJ IN

then
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then

lim 0 Nh) . - Ofh)(;)
N -... 00 IN

uniformly.

Proof: For simplicity of notation, put 9 ~ JJh. By definition,

~.
1

(Vg)(~.) == J V(;., y)g(y)dy,
1 0 1

and

~ N
(KNg). ~ L c .. V( £., £. )g( £.)

1 '0 IJ 1 ] ]
] ==

Thus, from (3.34),

(3. 38) IIKNh - "o/g II -s £ (N) sup IIV(s.,·)g II .
(J (1) 1 (J,1

where Vg = (Vg(sO), ... ,Vg(;N))'

.:::: £o(N)fJ.l(g) ,

Ntl
R ,where the norm on the left is taken in

One has

and

Con sequent!y,

from which (3. 37) and the uniform convergence of the numerical values

0Nh). to (JJh)(s) follow.
IN
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Remark 3.1. Since ]"h is smoother than h, condition (3.36) is not
as restrictive as it might appear.

Remark 3.2. Suppose that one chooses the simple trapezoidal rule
of numerical integration [1, pp. 15-17]. Then, one may take

"" • '= II II 2 and
0-,1 C'

, 1

where the constants K
l
, K Z depend only on V(x, y). In this case,

(3. 39)

(3.40)

Lemma 3.4. Under the above assumptions,

1
lim 0Nrp, Lj;)N ::: f Lj;(x)(JJrp)(x)dx .

N -00 0

Proof: Since rp is smooth, one may take f.l
l

(:ITrp) :::: K II JJrp II , where
K depends only on V, and II II denotes II II . defined on(fthe
entire interval [0,1]. This givel (f,l

i :::: 0,1, ... , N.

( 3. 41)

Thus, using (3.18),

Ic~IILj;.1 <
11-

Now, by(3.34),

(3.42) I
NN 1 I
i~O Ci (:ITrp)(s)Lj;(Si) - £Lj;(x)(JJep)(x)dx ~

S. £ (N)/ILj;JJepil .
p p
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From (3.41) and (3.42),

(3.43)
1 1

I <TNCP, lfJ)N - J lfJ(X) (]Jcp) (x)dx 1 .'S.. K (: (N)(l + N) + K (: (N) ,o 0-0- pp

from which (3.40) follows immediately.

Remark 3. 3. One may use the smoothness of .ITc;o to replace
by Klllc;o 110--2 in (3.41), where the constant K l depends only on

Remark 3.4. If the trapezoidal rule is used, then

I 1 I 1 10NC;O, lfJ)N ~ J lfJ(x)(JJc;o)(x)dx ~ --2 (K + K ) + --3 K ,
o 12N rr p 12N IT

where, since 0'::: 1,

and K
l

depends only on V.

Lemma 3. 5. As in Lemma 3.4,

II.ITc;o II
v. 0-

(3.44)
1

lim <TN
f , lfJ) N ::: f lfJ(x)(JJf)(x)dx .

N-oo 0

The same type of convergence rate as (3.43) may also be obtained in
this case.

Theorem 3.1. Suppose that the original integral equation (3.1) is
uniquely solvable for all to Then, a positive integer NO exists such
that for all N.2: No, the discrete system (3.12) is uniquely solvable for
all f, furthermore, the solutions uN of (3.12) converge to the solution
u(x) of(3.l)as N-oo.

Proof: The condition 1 - (~,lfJ)"* 0 is necessary and sufficient for
the unique solvability of (3.1). Consequently

(3. 45) Il-(~,lfJ)l::: 26>0.
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Recalling that <I>:: HlP, .,pN :: JNlP, it follows from Lemma (3.4) that a
positive integer NO exists such that

(3.46) j(q>N,lJ;)N - (i1>,ljJ) I < 0

provided N ~ No' Thus, as

(3.47) 11- (<IJN,tj;)N' ~ j 11- (\l>,ljJ)/- !(\l>N,ljJ)N - (~,tj;)11 ~ 0> 0,

the finite system (3.12) is uniquely solvable for all f as long as N 2':. NO'
The convergence of the numerical solutions (3.16) to the analytic solution
(3.5) follows at once from Lemmas 3.3 - 3.5.

The inequalities used in the proofs of Lemmas 3.3 - 3.5 may be used
to obtain the following result.

(3.48)

Corollary 3.1.1. If N 2':. No, then

lu~ - u(s,)! ~O(£ (N)) + 0(£ (N))
1 1 P 0-

Thus, the convergence rate of the numerical solution is determined
by the slower of the convergence rates of the numerical integration methods
used, and is of the same order of magnitude.

The case V(x, x) oF 0 will now be considered briefly. For N ~ N
l
,

where N
l

is some positive integer, condition (3.19) guarantees that

(3.49 )

in fact, for ~ < 1, N ~ N
l
,

(3. 50)

N
1 - K,. '* 0 ,

11

N fLl:!:.
1 - K., > 1 - N '11-

N
i = 0,1, ... , N. Dividing equations (3.12) by 1 - K" gives a system of
the form considered above, however, the result of Ll~mma 3.2 should be
replaced by

e( 3. 51) IIJ
N

II ~ 1
1- ~

N

Q'fJ.

1 - fLl:!:.
N

and the corresponding value used in subsequent inequalities 0 This modifica­
tion does not alter the rates of convergence derived previously.
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§4. Mildly singular Sturm- Liouville problems. The technique presented
above for regular boundary value problems of Sturm-Liouville type can be
extended immediately in a formal way to problems which involve various
types of singularities. However, the analysis becomes more delicate,
particularly for the corresponding numerical procedure. As an example,
consider the problem

(4.1)

- A [(1 - x 2) du .j + q(x)u ::::: f ( )
dx dx lX,

u(O) ::::: 0,

Iu(l) I < + 00 •

Assuming that q(x) is Iismallll, take

(4. 2)
d 2 du

L u = - - [ (1 - x ) - ]a dx dx

The funct.ions cp(x) and lj;(x) defined by (1. 5) and (1. 6), respectively, are

(4. 3) cp(x) :::
1 + x

log ~l~, lj;(x) ::: 1 ,
- x

up to a constant multiplier. Their Wronskian is

1 1 + x 1og--
1 - x

2
(4.4) W(x) = = 2 ,

1 1
0

1 - x--+
1 + x 1 - x

so that

(4. 5)
2rna ::: (1 - x ) W(x) = -2 .

The corre s ponding Green I s function (1. 9) is

(4. 6) G(x, y) =

1 1 1 + x- og -- x S. y,
2 1 - x '

I l .L±...Y >
- 2 og 1 ~ y' x - y .

Assuming that the transformed function
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(4.7)
1

f(x) = J G(x, y)fl(y)dy
o

exi.sts, the technique of §2 may be applied to obtain the perturbed Volterra
integral equation

(4.8)
x

u(x) - J V(x, y)u(y)dy = f(x) + (u, ~)cp(x)
o

corresponding to (2.7), where

(4.9)

and

(4.10)

'"
V(x, y) = - -2

1 [log 11 t x - log L:t......Y.
l

t ] q(y)
- x - y

"" 1
ljJ(x) '" - 2 q(x) .

~ () 1 "' Al-x)(lty)
q y og V(ltx)(l-y) ,

The analysis of §1. 3 does not apply directly to equation (4.8), as
the kernel V(x, y) and the right-hand side of the equation are unbounded.
However, it may not be difficult to construct a theory of equations with
singularities of this type. One approach would be to consider functions
v(x) such that

(4.11) u(x) = log(l - x) . v(x)

is bounded at x:::: 1, and derive a regular Volterra integral equation for
v(x). For numerical work, one would need to derive formulas for numerical
integration which apply to kernels of the form (4.9) and functions (4.11)
[5, pp. 237-240].

§5. Nonlinear problems. Attention will now be turned to nonlinear boundary
value problems of the form

( 5.1) L
O

u(x) - F(x, u(x)) = 0 ,

where Lo is a regular Sturm-Liouville operator of the form (1.1), and one
has the homogeneous boundary conditions (1. 3) or (1. 4). Taking the Green's
function G(x, y) of the operator Lo subject to the given boundary conditions
to be of the form (1. 9) I, equation (5.1) can be transformed immediately into
the nonlinear integral equation of Hammerstein type
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(5. 2)

or, using (1.9)',

1
u(x) - J G(x, y)F(y, u(y))dy :::: 0 ,

o

x 1
(5.3) u(x) - J lj;(x)<p(y)F(y, u(y))dy = (,O(x) J lj;(Y)F(Y, u(y))dy .

o x

x
Adding <p(x) J lj;(y)F(y, u(y))dy to both sides of (5.3) and defining the

o
scalar unknown c by

( 5. 4)

gives the new problem

1
c :::: J lj;(y)F(y, u(y))dy

o

(5. 5)

where

(5. 6)

x
u(x) - J V(x,y)F(y, u(y))dy :::: c<p(x) ,

o

V(x, y) '" lj;(x)<p(y) ~ <p(x)lj;( y) .

Equation (5.5) thus represents a family of nonlinear Volterra integral equations
depending on the parameter c. The original problem (5.1) (or the
Hammerstein integral equation (5.2)) is equivalent to the system (5.4)-(5.5).
If, for example, u(x) satisfies (5.2), then it will satisfy (5.5) for the value
of c given by (5.4). On the other hand, suppose that (5.5) has solutions
U(x;c) for values of the parameter c which includes a solution c:::: c':' of
the scalar equation

(5.7)

where

(5. 8)

C ::: w(c) ,

1
'1f (c) = J lj;( y) F(y, U(y; c) )dy .

o
,',

Then, u(x):::: U(x; C ') will be a solution of (5. 2) and hence of (5.1).
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The structure of the problem considered here is essentially the same
as in the linear case; the Hammerstein integral operator ill defined by

(5.9)
1

(illf)(x) = J G(x, y)F(y, f(y))dy
o

has been expressed as the sum of the Volterra integral operator V with
definition

(5.10)
x

(Vf)(x) = I V(x, y)F(y, f(y))dy ,
o

and the operator ijI> with one-dinmsional range given by

( 5. 11)
1

(@f)(x) =: ql(X) I LjJ(y)F(y, f(y))dy
o

However, from an analytic and numerical standpoint, the nonlinearity of the
operators "0/ and @ introduces complications which are ..ot present in the
linear case. One has to settle the problems of existence, uniqueness or
multiplicity, and dependence on the parameter c of the solutions of the
nonlinear integral equations (5. 5), and then consider existence and unique­
nes s of the fixed points of the scalar operator w defined by (5.8). In
the linear case, the Volterra integral equations always had a unique solution
which depends linearly on the parameter c, and the fixed point problem
consisted of one linear equation in one unknown. To get an idea of the
complexity involved in even a simple-appearing non~inear case, one should
try to solve (5.4)-(5.5) with

(5.12) V(x, y) = x - y

(which corresponds to L
O

= with the boundary conditions (1. 3)), and

(5.13)
2

F(y, u(y)) = u (y) ,

for a solution u(x) which does not vanish identically.
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In the case of numerical solution of (5.4)-(5.5), additional complica­
tions arise from the fact that U(x;c) and '1J (c) are only calculated
approximately. It thus appears that this decomposition of the Hammerstein
integral operator does not lead to a solution method which is as direct,
simple, and effective as in the linear case. This situation immediately
suggests the use of a linearization technique, such as Newton's method.
Here, the original nonlinear problem would be approximated by a sequence
of linear problems. These intermediate problems would be solved by the
methods developed above for the linear case, and their solutions will
converge (under certain conditions) to the solution of the nonlinear problem.

To be specific, suppose that uo(x) is a function which one may
consider to be an approximate solution of (5.1), in a sense to be made more
precise later, and define

(5.14)

where F (x, z) = L F(x, z), and
z az

(5.15)

To obtain the next approximation u
l
(x) to u(x) by Newton I s method,

one would solve the linear problem

( 5.16)

with the same homogeneous boundary conditions as before for

(5.17)

In addition to obtaining the next approximation ul(x) from the
solution of (5.16), one may analyze this linear problem for satisfaction
of the sufficient conditions for the convergence of the sequence of functions
{u (x)}, obtained by Newton's method, to u(x). This sequence is
coHstructed by defining

F (x) = F (x,u (x)),
n z n

(5.18)
R (x) = LOU (x) ~ F(x, u (x)) ,
n n n

and solving the linear problems
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(5.19) LOTJ (x) - F (x)TJ (x) ::: -R (x)
n n n n

with homogeneous boundary conditions for the functions

(5.20) TJ (x) ::: U l(x) - u (x) ,
n n+ n

n ::: 0,1,2,... • A convenient theorem to use in this connection is the...
one due to 1. V. Kantorovic [6,9], which provides sufficient conditions
for the convergence of the sequence {u (x)} and error estimates [8,9] for

n

(5.21) Ilu(x)-'u(x)lI= max /u(x)-u(x)1
n O<x<l n

in the space of continuous functions on [0,1]. The quantities required for
the application of this theorem are estimates for II TJO II, a bound for the
inverse of the differential operator LO - FQ(x)ll (or an equivalent integral
operator), and a Lipschitz constant for F ,tx, z) or a bound for F (x, z) in

[ (
z ) , zz

a suitably defined region in 0,1] x - 00, +00. To obtain these estimates,
suppose first that LO has a Green's function of the form (1. 9) I. The
problem (5.16) may then be transformed into the perturbed Volterra integral
equation

(5. 22)

where

x

TJo(x) - f Vo(x, Y)TJO(y)dy - (TJo ' ~o)cp(x) = -Ro(x) ,
o

(5.23)

""
V0 (x, y) - [cp(x)ljJ( y) - cp( y)ljJ(x) ] F0(x)

~o(x) ::: ljJ(x)FO(x) .

The method for the solution of this problem is the same as indicated in
equations (3.,3)-(3.7). Letting 'Yo denote the Volterra integral operator
with kernel V (x, Y), ando
(5.24)

then, if

(5.25)
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one has

(5.26)

Knowing TJo(x), one can obtain ""0 II directly. As an alternative
estimate, (5. 26) yields

(5.27)

If

(5.28)

then one may use (1. 20) to obtain

(5. 29)

Now, suppose

(5. 31)

or

K :;;: K(r
o

) 2: 0 exists such that

rIIF z(x, v(x)) - Fz(x, w(x)) II ~ K IIv - w II ,

lv, w E {u Illu - Uo II :-5.fo} ,

(5.32) rnaxIFzz(x,z)I ~K, (x,z) E [0,1] x[-lluo" - rO' /Iuo /l +roJ .

(Inequality (5.32) implies (5.31); however, the Lipschitz condition (5.31)
does not require F(x, z) to be twice differentiable with respect to z.)
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Once the above computat.i.ons have been performed, one may check
the satisfaction of the hypotheses of the following theorem on the
convergence of Newton's method.

Theorem 5.1 (Kantorovi~). If (5.25) is satisfied, and

(5.33)

for

(5.34)

then equation (5.1) has a solution u(x), to which the sequence
defined by (5.18 )-( 5. ZO) converges , with [ 8 ]

{u (x)}
n

(5.35)

where

n
_.2

/I u - u II < --::;C':'J__

n - Zn
1 - \.HJ

ZVl - Zho
h • 11 110 /I ,
o

(5. 36)
1 - \II - Zh

(0 :::: 0
1 + \II - 2ho

If one is interested also in the value of the "shooting constant" c
appearing in (5. 4) -( 5. 5), defining

(5.37)
1

c ;:: f tf;(y)F(y, un(y))dy ,
n 0

one has the following result.

Corollary 5.1. Under the hypotheses of Theorem 5.1, one has

(5.38) Ic-cnl.::;.KIItf;II· lI u - u
n
ll,

where II u - u II may be estimated by (5. 35).n
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Remark .s.l. Using (5,29) and (.s, 30), inequality (5.33) may be
replaced by the condi tion

(5. 39)

on the residue function R
O

(x).

For numerical purposes, the methods of §3 may be appLied to the
linear~problems (5.19) to carry out the iteration procedure. If ITO'P and
(JJo'P' 4JO) can be calculated accurately enough to guarantee the satisfac­
tion of (5.25), and the other hypotheses of Theorem 5.1 can be verified,
then this insures that the original problem (5.1) has a solutiorl u(x).
Any result obtained numerically can be treated as an initial approximation
uo(x) to u(x), from which the error bound

(5. 40)

follows by Theorem 5.1.

1 - .Jl - 2h
O

11 110 II
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NONLINEAR VIBRNrION THEORY OF PAVI~MENTS
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ABSTRACT. The problem of calculatin~ the dynamic re­
sponse uror'lucen bv a vertical harmonIc load Buulien to
the area on the surface of a nonlinear layered elastic
half space has been studien. An elastic restorjn~ force
which includes first, third, and fifth orner terms in
the dispIRcement of the pavement surface is required to
describe the measured nonlinear dynamic response of
navements which are subjected to dynamic loads. The
equAtion of motion of a nonlinear oscillator is solved for
this elastic restoring force, and the dynamic deflection
of the navement surface is determined as a fune,tion of the
applied static and dynamic loads. The mechanical impedance
of a pavement, which is modeled as a nonlinear layered
elastic half space, is found to depend. on the values of the
static and clynamic load applied to the pavement surface.

1. INTRODUCTION. Nondestructive vibratory testin~ of
nAvements may be of importance toward prenictln~ the
uerformance of alrf'ield pavements and may be used for the
rapio evaluation of navement strenp-th. (Ref. 1-3) '1'0 be
useful, the nhysical quantities mea~ured by the non­
destructive testinrr technique must be related to pavement
nerformance. Pavement oerformance 1s measu:r-ed by number
of aircraft coverap:es on the navement reqUired to reach
some deflnecl condition of failure. The U. S. Army
F.nl7ineer Waterways Experiment Station (WES) was requested
to nerform experimental and theoretical investi17at1ons to
determine if the physical quantities measured by the non­
destructive technique can be used for pavement evaluation
and can be related to pavement performance. Some of the
quantities that are measurable by the nondestructive
vibratory technique are:

The dynamic deflection of the pavement surface
versus the frequency of vibratory loading for
a series of fixed static and dynamic loads.

The stress and strain distribution in the
pavement around the vibrator measured on
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instrumented pavement sections.

£. RayleiQ'h wave dispersion curves p"ivinp: phase
velocity versus wavelen~th measuren with the
wave propagation techniques.

s!,. The dyn8mlc deflection of the pavement surface
versus the dynamic Porce for a series of fixed
static loads and fixed frequencies.

~ost of the previous work on the nondestructive testing of
DA'rements has treated the mechanical quantities listed in
SUbool'avranhs a, b, and c. This DaDer concentrates
pr\ma.rily on the nonlinear response exhibi ted by pavements
throuo::h the measurements listed 1n Subnara,c;raph d. Further
8+.u1y of the physical quantities mentioned in SUbparap:raphs
9, h, and c should be made in the lip;ht of the new results
;btained f~om the study of nonlinear effects in pavements.

~he overall objectives Of this pavement study are:

a. The development of a mechanical model which
describes the measured resPonse of pavements
to a si~usoi~al ~ynamic loading that is
a pplied. to the pavement surface.

b. The development of 8. method for determinln~

the subsurface struct-,ure of the pa.vement in
terms of the measured dynamic response of
the pavement.

The rl,evelopment of the pavement response model includes
the following specific objectives:

a. To determine the effects of intrinsic pavement
properties and structure on the dynamic 10ad­
deflection curves.

~. To determine the effects of such vibrator
characterIstics as dynamic load, static load,
and contact area on the dynamic load deflection
curves.

Q. To calculate the dynamic stiffness and determine
its dependence on the intrinsic properties of
the pavement and on the characteristics of the
vibrator used to measure this quantity.
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1. To develop a theory of the nonlinear dynamic
response of pavements which enables the compar­
ison of dynamic stiffness measurements obtained
from different vibrators at the same pavement
location.

The theoretical work done in this paper may have
applications for the nondestructive testln~ of roads and
airport pavements. The possible practical applications
of this work are twofold: (a) the use of the dynamic
stlf~ness measurement for determining the subsurface
structure of the navement, i.e., the shear modulus and
thickness for each pavement layer, and (b) the development
of the capability of comparing the values of the dynamic
stiffness measured by different vibrators at the same
pavement location.

To achieve the objectives listed above, both theoretical
and experimental studies w~re conducted.

The theoretical studies included:

a.

c.

'I'he formUlation of a nonlinear mechanical model
to describe the response of a pavement to static
and dynamic loadln~.

The determination of effects of the structure of
the pA.vement-soil system on the parameters
which appear in the nonlinear vibration model.

A numFlrical Bvaluation of the parameters that
appear in the nonlinear model.

'T'he developmFlnt of formulas ;71 vL'1r.r the shear
modulus A.nn la;ycr thickness of' each pavement
layer in terms of quantities that are o"btalned
directly from the measurFld dynamic load­
deflection curves.

The experimental studies performed on both actual airport
pavements Rna esneclRlly constructed test; sections lncluded:

~. The measurement of dynamic load-deflection
curves usin~ a vibrator developed at WES which
can ~enerate dynamic loads up to 16 kips (WES
16-klp vibrator) with a const~nt 16-kip static
load and a constant frequency of 15 Hz.

189



£.

The measurement of dynamic load-deflection
curves at a constant static load of 16 klps for
a series of fixed frequencies in the range from
10-40 Hz.

The measurement of dynamic load-deflection
curves at a constant static load of 16 kips and
a constant frequency of 15 Hz for a serles of
baseplates whose diameters ranp:ed fro':!l 5-1R in.

£. The measurement of dynamic load-deflection
curves at constant frequency and constant
baseplate size for a ran~e of static loads from
5-50 kips.

2. LINT'~AR OSCILLATOR MODEL OF PAVr:MgNT RESPONSE. Non-
destructive vibratory testrn~ of pavements uses a mechanical
vibrator operatin~ at a known frequency and dynamic force
applied to the pavement surface to produce a time-dependent
sinusoidal deflection of the pavement surface directly
beneath the vibrator baseplate. The magnitude of the
d,ynamlc deflect 10n of the pavement surface for a series of
dynamic force levels and frequencies is considered to be a
measure of the stren~th of a pavement. This section
discusses a linear oscillator model u~ed to describe the
motion of the surface of a linear elastic half-space and then
shows how this model fails to account for the measured values
of the dynamic deflection of the pavement for a series of
frequencies and dynamic loadln~s ~enerated by the vibrator.
The concepts of dynamic stiffness and deflection are intro­
duced, and the separation of static and dynamic displacements
i~ demonstrated.

"['he equation of motion of a mass of pavement or solI
under~oin~ vertical oscillations on the surface of a homo­
~eneous elastic half-space is

mX + C x + k x = F (t)
H H V

where

m = lumped mass of pavement and soil

x = acceleration of pavement surface
2 ;-----

C =damp1n~ constant (3· 4a1/GY!p;!(l- v),
H where a 1s the contact radius of the
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vibrator baseplate, G is the shear modulus
of the half-space, y 1s the density by
weight of the half-snace, ~ is the acceler­
ation due to gravity, and v is Poisson's
ratio, Reference 4)

x = velocity of pavement surface

k = sprin~ constant (4GA/(1 -v), Reference 4)
H

x = total elastic deflection of the pavement
surface under the vibrator baseplate

F (t) =
V

total force applied to the pavement surface
(static plus dynamic)

t = time

The values of k
H

and C
H

are chosen to construct a damped

snring model for the vertical vibrations of an elastic half­
space; therefore C

H
represents the radiation dampin~ of

the system. If viscous friction 1s present, the value of
the actual dampln~ constant may be considerably lar~er than
the value of C

H
•

The total force apnlied by the vibrator is written as

(2) F' (t) = F + F (t)
V s D

where F equals sta.tic load and F' (t) equals dynamic
s D

load. The total displacement can be written as

(3 ) x = x + ~e
where x is the static elastlc deflection of the pavement

e
surface beneath the vibrator baseplate, F /k ,and ~ is

s H
the dynamic elastic deflection of pavement surface beneath
the vibrator baseplate measured from the static equilibrium
deflection. Combininp; Equations 1, 2, and 3 gives the
equation of motion as

(4)
.

m~ + CH~ + kH~ ~ FD(t)
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wherein all static forces and displacements have canceled.
Therefore, for a linear system, the static deflection does
not affect the nynamic response of the vibrator mass; only
the reference point is chan~ed by the static load.

For a sinusoidal 1riving force, the dynamic deflection
obtained from Equation 4 1s (Reference 5)

Fn(w)ei(wt-fl)

k 2 :2 c2 21 \ H - rnw I + HW

where:

F (w) = ma~nitude of the sinusoidal dynamic force
D applied to pavement surface

i ( wt-fl )e = complex number notation for a sinusoidal
time dependence where i "" 1 ..-1 t W =
angular frequency, and Ii. = chase an~le

between the dynamic load applied to the
pavement surface and the dynamic deflec..
tion of the pavement surface.

Two kinds of dynamic response curves of physical interest
can be obtained from Rquatlon 5:

~. Dynamic deflection versus frequency.

£0 Dynamic deflection versus dynamic force.

For a linear system, the msp:nitude of the maximum dynamic
deflection is a simple linear function of F (w) as shown
in F'll7.ure lao The marrnitude of the peak D dynamlc
deflection as a function of frequency appears 1n Fip:ure IE
for a constant force vibrator and for an eccentric mass
vibrator (where the dynamic force 1s frequency-dependent

- 2
in the manner P «(O) 'V W ). The WES 16-klp vibrator 1s a

D

constant force vibrator.
denendence of (. on w

Therefore, for a 11near system the
is rather complicated, but the
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denendence of s on P (w) is p;lven simply by a stralp"ht
D

line whose sloue is the dynamic stiffness. The phase angle
A is assumed to be the same for all of the elements of

the mass of pRvement and sUbp"rade which enter into motion
with the vibrator mass. This is the lumped mass assumption.
which requires that m be interpreted as an effective mass
which vibrates in phase with the vibrator mass and has a
value which is determined by requiring that the theoretical
frequency resuonse curves agree with the measured frequency
response curves.

Equa,tion 5 shows that for a linear system. the dynamic
stiffness is given by

(IS) s ""

v • and the
the pavement

as seen

and depends only on the followin~ quantities:

§:.. Frequency.

£. Sprin~ constant.

£. Dampin~ constant •

.1. Lumped mass of pavement and soil.

The elastic parameters of the pavement. G and
radius of the contact area of the v'ibrator with
enter the dynamic stiffness throu~.h k and C.' H H

from Equation 6 and the expressions for the spring constant
and dampln~ constant. For a linear oscillator model. the
dynamic stiffness does not depend on the dynamic load or on
the equilibrlum elast ic deflection. 1. e.. ~ is a linear
function of F (w) • However. the experimental values of

D

the dynamic stiffness of pavements indicate a strong de­
pendence or the dynamic stiffness on the dynamic load and
on the static elastic equilibrium displacement of the pave­
ment surface. Therefore. the linear oscillator model 1s
insufficient to describe the response of pavements to dynamic
loadin~s. and a nonlinear oscillator model is reqUired to
explain the experimental data.
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~ THE NONLINEAR MECHANICAL MODEL. In this section, a
nonlinear mechanical model is developed to describe the
response of a pavement-subp;rade system to a sinusoidal
dynamln loading applied to the surface of the pavement by a
vibrator. The model is developed in three basic steps:

a. The determination of the nonlinear pavement­
restoring force in terms of three parameters,
the linear elastic parameter of a nonlinear
pavement, the third-order nonlinear elastic
parameter, and the fifth-order nonlinear elastic
parameter.

b. The solution of the motion equation (4) for the
case of the nonlinear pavement-restorin~ force
and the sUbsequent calculation of the dynamic
stiffness and deflection of the pavement as a
function of the static and dynamic loads exerted
by the vibrator.

£. The determination of the parameters k
OO

' b,

and e in terms of the elastic constants of the
layered pavement-sub~rade system and 1n terms of
the finite depth of influence that a static
surface load produces 1n this system.

If for a f1.xp.d frE~quency the dynamic deflection of the
oavement surface is not directly proportional to the
dynamic force, the system 1s said to be nonlinear. The
experimental data indicate that this is the case for most
asphaltic concrete (AC) ravements and for some portland
cement concrete (PCC) pavements. It will be shown that the
nonlineAr behavior of a pavement undergoing forced s1.nusoidal
vibrQtions can produce very different values of dynamic
stlffnesR such as those measured at the same location by
different mechanicRl vibrators. Therefore, it is important
to be able to account for the nonlinear effects by a simple
physical model.

A physical and ma.thernatlce.l model for the nonlinear
response of Pavements can be derived which will account for
the dependence of the l~pedance values of the type of
vibrator m,"lp.d to o.etermine then,Le., on the st;atlc wel~ht,

dynamic loa.d, and contact area of the vibrator. Th1.s paper
will show that it is possible to descr1be the dependence of
the meaRured values of pavement dynamtc stiffness on the
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physical chara.cterlstics of the vibrator by introducing
three narameters to describe the nonlinear pavement­
restorin~ force.

The pavement-restorlnp.: force 1s the foree that the bulk
pavement exerts on the lumped pavement mass from below. In
linear Equation 1, the navement-restorln~ force 1s simply
kHx. In ~eneral, the pavement restorin~ force is not

equal to the force ~enerated by the vlbrator; only for the
static case are these two forces equal. The first task
to be accomplished is the development of a mathematics.1
expression for the pavement-restorinR force which satisfies
the followln~ two very Reneral criteriaz

~. The mathematical form of the navement-restorit'Jp:'
force will be sufficiently p;eneral so that the
nonlinear dynamic resnonse of the pavement that
is calculated from this restorin~ force will be
adequate to describe the experimental nonlinear
dynamic load-deflection curves.

£. Only terms based on sound nhys!cal theory are
included in the mathematical form of the pavement­
restorln~ force.

The form of the nonlinear elastic pavement-restoring force
used in the nonlinear model 1s determined by requirin2 the
restorln~ force to be antisymmetrlc in the deflection of the
pavement surface, i.e.,

Equation

F' (x) = -F (-x)
P p

equals the pavernent-restorln~ force.

F (x) ~ k x + bx3 +
p 00

equals the linear elastic parameter of a nonlineark
00

where F (x)
p

7 is satisfied for the linear case,

where

F =k x. A slrr.ple
P H

nonlinear pavement-restoring force which satisfies Equation
7 and which is found to be adequate to describe the dynamic
load-deflection curves for pavements, 1s

C;ex /(8)

pavement while band e equal respectively the thlrd- and
fifth-order nonlinear parameters. The experimental data
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indicate that at least two nonlinear elastic parameters,
band e ,are required to describe AC and PCC pavements.
The linear sprln~ constant k which appears in Equation.. 00

8 1s not in ~eneral equal to the sprin~ constant k
H

Which

describes the homo~eneous linear elastic half-space.

The equation of motion of the oscil1atinp:: lumped pavement
and soil mass can now be written uslnl7, the expression for
thenonl1nea.r pavement ...restoring: force derived in the pre­
voius section. This equation of motion cannot be completely
seoorated into static and dynamic parts as was the case for
the linear elastic systt~.

The equation of motion for the nonlinear snrin.rr is !:riven
by

J ')
(9) mx + ex + kOOX + bx + ex = FV(t)

where C is the dampln~ constant of the pavr. ~nt-v1brator

system, and m 1s the in-phase lumped mass Jf the pavement
and subp:ra.de. The value of C is 1a1'9;er t,{lan the value of
the radiation dampin~ constant C

H
which appears in

Equation 6 because C describes several ma.terial dampinR;
processes in addition to the dissipation of ener;.z:y by
mechanical radiation. Equation 9 can be r.rreatly simplified
by choosinp; a. new ori.:dn of coordlnatefl "'J.S in Equation J,
such that the motion is described in te~~s of coordinates
measured relative to the static equilibrium deflection.
By itself the static load produces a static deflection Fiven
by

( ) 3 J
10 F = k x + bx + ex

s 00 e e e
Substitutin~ Equation 10 into Equation 9 enables the equation
of motion to be written as

i J 3) II S 5)(11) mX + Cx + koO(x - x ) + b,x - x + e x - x ~ F (t)
e \ e \ e D

Uslnp; Equation J and the fol1owin~ al~ebraic identities:

(12) x
3

- x~ = (x - Xe }(x2
+ xX

e
+ x~)

(l J ) x J x== (x - xe ) (x
4

+ xJxe + x
2
x: + xx; + x~ )
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allows Squatlon 11 to be rewritten as

( 14)

where

--
m~ +

1s the

, 3 5
Ci;: + kO~ + b~ + es = FD(t)

effective quasi-static sprinr constant

and is defined by
2 4

k = k + 3bx + Sex +'T(x s)
o 00 e e e

and

(16) i7(x 1;:)
e

~Quatlon 14 is
(Reference 6).

3
= 3bx S + 10ex S

e e
a p:eneralizatlon

2 2 3
+ 10ex s + Sex S

e e
of the Dufflnp: Squat ion

In this section, the equation which determines the
amplitude of the sinusoldal dynamic deflection of the
pavement surface beneath the vibra.tor mass is developed.
The amplitude equation is expressed in~erms of an effective
snrinp:: constant which in turn depends on the static and
dynamic deflections of the pavement surface. The dynamic
stiffness for the nonlinear system will eventually be
expressed in terms of this effective snrin~ constant.

The functions k (x s) and p:(x~) are time-dependent,o e e
and therefore Equation 1/", is very difflcul t to solve exactly.
Under snecial conditions to be described, the coefficient
which annears in Equatlor. 14 may be taken to be l.ndependen~
of time, thereby maklnp- this equation somewhat easier to
solve. For harmonic motion, the dynamic force applied to
the pavement surface by the vibrator can be written as

(17)

(lR)

F () Fn(w)e
iwt

D t =

~(t) = Aei(wt-A)

where A equals the amplitude of the dynamic deflection
of the pavement surface directly beneath the vibrator base­
plate. The dynamic deflection of the lumped mass is assumed
to be equal to the dynamic deflection of the pavement surface.
For the case in which the dynamic deflection amplitude 1s
much less than the static equllibriurn deflect ion, A «x

e
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used in Equation 15, While for the case
4

g (x ~) ;::: 10ex
e e

13. For the two special cases, the
written as

s:r (x 1;)::::::: 0 ca.n be. e

where A~ x ,the tlme-avera~ed value of
e

can be used. in Equation
coefficient k can beo

(19)
2 4

k = k + 3bx + Sex A« x
0 00 e .. e e

(20)
2 4

k :::: k + 3bx + 1 t)ex A ~~:~ x
0 00 e e e

A simple linear interpolation formula for k
O

is given by

( 21)

It should be noted that the choice of

\ 4
+ 2 ~\ex

XeJ e

k as time-independent
o

is an approximation which becomes invlaid for lar~e dynamic
deflections.

Even with the coefficient assumed to be time-

independent, Equation 14 1s a nonlinear equation. However,
it can be shown that Equation 14 can be cast into the form
of an equivalent linear system whose amplitude equation is
(Reference 6)

(22) 2[( 2)2 22lA k - mw + C w I ~

.J

provided an effective sprln~ constant is introduced which 1s
defined by

(23)
2 4

k :::: k + ubA + ~eA
o

where k is p-iven by Equation 21, u:::: 3/4 , and ~ = 5/8 •
o

The effective spring constant, k, is seen to be a function
of the amplitude of the dynamic deflection and also depends
on the static equilibrium deflection throu~h the coefficient
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For this
x and

e

k
O

• If the static load apnlied to the pavement by the

vibrator were zp.ro, then x = 0 ~(x~) = 0 ,and ko =e e
case, there could be no couplins:r of terms between
~ and the effective spring constant would depend

k
00 •

only on the amplitude of the dynamic deflection, On the
other hand, if the dynamic load were zero, the effective
sprins:r constant would be k = k

O
and would depend only on

the static equillbr lurn rleflect ion.

4. CALCULATION OF (I'H!~ DYNAMIC STlf-!~F'NESS AND 'mILm:FLEC'rION
AMPLI'rulJE FOR N6NLINEAffPAVEr1f<~NTS. This section considers
the" calculationor the dynamic stlffnAss and the dynamic
deflection of the pavement surface and dyna.mic forces
~enerated by the vibrator. The deflection amplitude equation
(22) derived in the previous section is expanded in powers
of the deflection amplitude, A ,to ~ive a tenth-order
al~ebraic equation for the determination of A • Infinite
serles expansions for the dynamic amplitude and the dynamic
stiffness are obtained as solutions to this equation.
These solutions express the dynamic stiffness and deflection
as f'unctions (')f the dynamic load generated by the vibrator
and the static d~flection of' the pavement surface. The
static deflection is then expressed in terms of the static
load, so that finally the dynamic stiffness Rnd deflection
are expressed in terms of the static and dynamic loads at
which the vibrator is operated.

The explicit equation for the dynamic deflection amplitude
will now be calculated. The dynamic stiffness of the pave­
ment which is described by a n::mltnear oscillator is p;lven
by

2 ( 2\2 2 2
( 24 ) S ::; k.. mw I + C w

where the effect ive spring constant is g-lven byP~quation 2).
The dynamic stiffness depends on the amplitude of the
dynamic displ~cement and the static equilibrium deflection.
'rhe amplitude of the dynamic deflection 1s determined by
Equation 22, which may be written as

( 2 C;) 2 2 2 ( )A S := F w
D
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Usin,a; Equations 23 and 24, the amplitude equation (2')) can
be NTi tten as

(26)
2 2

S Ao
2\ 4

+ 2ubik - mw ,IA +
\ 0

2\
mw e

226
+ u b A

8 2 2 10 2
+ 211n bell. + n e A == Ii' (w)

D

inA == a

the dynamic stiffness obtainedS is the value o~a
by taklnp;s

where

from k == k (or equivalentlyo
~quRtlon 23) and is defined by the equation:

(27)
?\2

- m w-!
i

2 2
+ C w

Whereas the simple linear system oroduces a linear equation
~or the calculation of the dynamic displacement in terms of
the dynamic force, the nonlinear systemapproprlate to
describe dynamic pavement response produces a fifth-order

2
equation for calculatln~ A in terms of F (w) • The

D

value So appearing in Equation 27 is the dynamic stiffness

in the limit of zero dynamic loading.

The tenth-order equation (26) will now be solved for the
dynamic amplitude A which will take the form of an infinite
serles expansion. The dynamic stiffness is calculated in
terms of A by ~quatlon 25 so that S also will have the
form of an infinite series expansion.

The solution of Equation 26 for the amplitude of the
dynamic displacement in terms of the amplitude of the dynamic
force 1s, in rreneral, difficult to obtain analytically. For
the case 1n which the dynamic force is not very lar~e, the
amplitude of motion and the dynamic stiffness are easily
obtained from Equation 26 1n the form of

(2R)
2

'l1j;+'l1j;
1 2

\+ ••• I
!
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where

:ll' J. 2
= coefficient appearin~ in the power series

expansion of the amplitude of the dynamic
deflection .

~ = expansion parameter

;3 ;3 :=l' . 2 coefficients appearing in the power series
expansion of the dynamic stiffness

(30)

The values of ''1 ,
1

by combining Squatlons 26

and

'1
2

d, and ~2 can be obtained
1

and 28 with the followin~ results:
2

FD( w)

4
So

(31 )

(32 )

(33 )

(34)

-Ub(kO
2 )

'II = - mw

7 'J. 2b
2

(k
o

2 \2
s~[ 2

2 2 '",

+~J1. = 2"
mw ek - row

2 \ 0 2

I 2\
j := lJ.b~ko mw )1

2. 2\ 2
b

2 .
.:; 2 "l 2 2

II /-

3 = S lle\k _.IW ) + 11 b k mw
2 0L C 2 '2 \ 0

The solutions Riven in Equations 28 and 29 are valid provided
the dynamic load is not so 1ar~e as to prevent the conver~ence

of these power S~~'AS solutions. Equations 28-29 have been
derived from Equatiort 25 and vive the fundamental description
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of the nonlinear dynamic load-deflection curves. These
equations ",r111 be fitted to experimental dynamic load...
deflection curves.

F
D

settin~ b = e = 0 in
A = a and S = S and the

o
on the static equilibrium
deflection and stiffness are

the linear condition for small

Equation 28 shows that the amplitude of the dynamic
deflection is not a linear function of ti' but approaches

~ D

or lar~e S • Theo
linear system can be re~alned by
Rquations 28 ... )4. When F =0

D

dynamic stiffness depends only
deflection. If F = 0 ,the

s
~iven by ~quations 28-34 with the provision that kO be

The static load throu~hrenlaced by the constant k
00

P~quation 10. Therefore, 1n fl'eneral, the dynamic stiffness
Of a nonlinear S,vstem will depend on the Inagnl tude Of F0

and ti' The rleoendence of S on F
O

enters throu2h the
s

expansion Parameter lj; p:lven in Equation 30, while the
deoendence of S on F

s
enters throu~h the function So

~iven by Equation 27.

The expression for the dynamic amplitude A given In
Equation 28 shows that A does not depend linearly on F

D 2
The departure from linearity is due to the terms ct'llj;, x 1jJ

. 2
••• , that appear InEi;quatlon 28. It 1s desirable to determine
the physical quantities which determine the del=rree of
departure from the linear condition, A = FD/S~. In the

range of small F ,the predominant term describin>r the
D

nonli~ea.r behavior of the deflection of the pavement mass 1s
obtained from Equations 28, 30, and 31 as follows:
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In ~eneral the de~ree of nonlinearity depends on four
quantities:

~. The ma~nitude of the nonlinear narameters band e •

b. The relative ma~nitudes of F
S

and Fn •
c. The frequency at which the vibrator 1s operated.

£. ~he static stiffness

vibrator system.

s
o

of the pavement-

The narameter
expan~ion for

inversely on

, which appears in the infinite series
and S in Equations 28-30, depends

_It
in the form So ,and therefore it follows

that the dynamic load-deflection curves of stiff pavements
are more linear than those of the more flexible pavements.
Thus concrete pavements are expected to have a more linear
resPonse to a dynamic loading than do the more flexible
asphalt navements. The value of S includes the effects. . a
of the sub~rade as well as the effects of each layer in the
pavement.

It is clear from Equations 28 and 35 that the de~ree of
departure from the linear condition expected for the response
of a navement to an applied vibratory load at the pavement
8urface depends on the frequency at which the vibrator is
operated. In particular, it 1s apparent from Equation 35
that the first-order nonlinear term is frequency-dependent
and that this first-order term will vanish at a special

2
critical frequency for which ko - mw = a •

It is a characteristic property of the first~order non­
linear term (Squation 35) that there is a critical frequency
for which this term vanishes; the critical frequency is
defined by

(36)

Vf1here

2 _ k O
w --c m

w is the critical an~ular frequency. In terms of
c
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the critical frequency, the first-order nonlinear co­
efficient can be written as

(37)
,2 2)

,:x. :; - ubm \ w - w
I \ C

At the critical frequency, the departure from a linear
system occurs only throuFth the second-order and hip-her

2 3
terms in 1}J , L e. , C(21}J + '1.

3
1}J + •••• Therefore at the

critical frequency, the pavement response for small dynamic
loads should be nearly linear. The critical frequency
depends on the vibrator characteristics as well as on pave­
ment nroperties. The connection between the resonance
frequency and the critical frequency is obtained from
Equation 23 as follows:

(38)
2 4

w2 = w2 + llbA + ileA
Rem

where w
R

1s the resonance angular frequency, In poeneral

In addition to a critical frequency, w (F) which
c s

depends on the static load of the vibrator, there is a
critical static load P for each operatin~ frequency of

sc
the vihrator, which is defined from Equation 35 by ''1. = 0

1.
or

k (F' )
o sc

2:; mw

Usinp; Equations 21, 37, and 39, the first-order coefficient
'1. can be written as

1

( l~O ) (l = 11.bi k (p ) - k (F )
1 '0 s 0 sc

(41)
2

.p
\\ sc

•••
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It 1s nC8sible t.o ODerate H vibrator at H:e erttical condition
by ~n.J1JRtlr.rr pither the freqmmcy or the stnt.tc load of the
vlhr~t.or.

<'In l'l.onroxlT!1At:elv linear dynamic deflect.ion versus nyn9mlc
force curve OCCHrs R t. the crt t lea1 -frequency. Ror an
arci+;rj""~ry freqlH~nc.y, the neoartl~re f'rom this -'3tmroxlmat.el,v
linear curve is nosit.ive or n8~Htive deDe~dinrr on the sign
of' the DA.Tamet.er II 1n Equat ion 2R and 37. The strrn of

the parameter 1 depends on the sl~n of the parAmeter b
1

and whether >
w < w or

c
F'

s
>< c,

sc
It car: be shown that

18 lTer:erally nep-A. t 1ve for pavement 8. For the case b < 0 ,
1-'1hlch corresPonds to the case in whioh the sheAr modultJs of
the hRlf-SPRce is constant v,ith n0pth, or to the case of a
layered system which has G decreasinrr with depth, as is
usually the case wltr.. navements, the dyn8.mic stiffness and
deflection VCrSl!S dynamic force curves are shown schematically
in ~l~ure 2a. ~or the case b > C , which may be possible
for ~he situation in which the shear modulus of a layered
system increases ranidly with depth, the dynamic stiffness
ann disnlacement versus ~ynamic force curves are shown
schemAt,ic.A.llV in PiFrure 2b. Therefore the choice of slp:n
b < 0 has nhysical relevance to oavement problems. For the
choice h < 0 , the s llTn of the pA.rameterx

l
can be positive

or r~e!m.tive denennins:r on whether w < w or w > w
e c

resnectively. The value of w can be determined by observ­e

ina the rrequency which nroduces the most li~ear 1080.­
deflection curve. The al~ebraic s1~ns of band e can be
determined from t.he manner in which the dynRmlc load-deflection
curves bend aWRY (A.S 1n F'1R;ures 2a and 2b) from the approx­
imately llneqr load-deflection curve which ocours at w = w

c

It should b~ nointed out that the definition of dynamic stiff­
ness 1s the ratio of the dynamic load to the dynamic deflection
for each point on the dynamic load-deflection curve.

The explioit dependence of the dynamic stiffness on j:i'

'D
is

viven by ~quations 28-34.
the exnllcit depenrlence of

TheRe equations will also aive
S on F ,provided thRt the static

s
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is expressed explicity as a

Because Equation 10

equilibrium displacement x
e

by usin~ Equation 10.function of 'P
s

is an equation of fifth de~ree, numerical methods are
~enerallv required for its solution. However, 1n the extreme
of very large and very small values of F ,analytical. s

solutions of this equation are possible. For a very small
static load, the equilibrium elastic displacement is ~iven by

(42)
F

x =-L
e k

00

~or somewhat lar~er values of ~ ,the cubic term manifests
s

itself and x may be obtained from the approximate equation:
e

(43)
k

00 x
b e

The discriminant of this cubic equation is

(44)

and is negative for small- P when b < O. For the
s

condition D < 0 , the solution of the cubic equation can
be written as (Reference 7)

( 4 c; ) x
e

=
4k

00

3b cos (~)

(46) cos 0
F

s
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where ¢ is the an?le which apnears in the solution of this
cUbic equat lon. In the 11m! t of sreall P (or small b),

s

the cosine term 1n Rquation 4~ has the value

1 0 \
p FJ

(h?) COR ( _1 :::: S + S
I 3 I

.- -'._-~~

3/2\ . /
.I 4kJ

l}k 3

\/- 00 00
Jb - 3b

Combininp; Squa+,ions 45 and 47 gives

(48) X
e

T:;I3b,
s

4
k

00

~he solutions o~ ~quations 45 and 48 have been derived for
b < 0 and are therefore applica.ble to Davements. It can
be shown that Squation 4B 1s also valid for b > 0 •

tHth IncreasinP:' v81ues of t.' ,the fifth-order terms
S

become (lominA-nt, 8.n(1 1n this region t 1e approximate solution
~or x is

e

('F k _p ,1/5 IF'
3/~: 115

(L}9 ) x = \ s 00 t s - b \ s;
I -- -eje Le e e ! e

,-""I

f~quation 10 1s easily solved for the p-eneral case of 8.n
arbitrary value of P by usln~ a. dl~ital computer. A

s
schematic p;raph of x versus F for pavements (b < 0)

e s

1s given in F1p;ure 3a while the correspondinp; p;raph for a
b > 0 formation 1s ~iven in Fi~ure Jb.

The snrin~ constant k
O

~1ven by Equations 19-21 has a

conventional interpretation only when the dynamic deflection
amplitude satisfies A « x l<l6r A I: 0 the sortnFr

e
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constant has the approximate value p:iven by Equation 21.
U8inrr ~quations 19. 48. and 49. the value of k for zero.' 0

dyne-mic amDlitude and for small F
s

1s

2 4
F bp3 \ F bF3 '

( 50) k
O = k + 3bl _5_

8 ) + 5e I .JL - s
00 \ k oO k~o

. i k T i

\ 00 k
oo

J

whi.le for larp:e '"
s

k
o

= k
00

, F 3/5
b I" s :

- e\ ej

. F .3/5
b

I .
I S

e \ej

k
00
e

I
.- 4/t;

1 S -. F ~ -
s "\e j

Por very small F , Equation 50 can be rewritten as
S

F f '. 4
2 " F

( 52) k = k + 3b ( k
S + : 5e 6 b i, S \- ri --j

0 00 1 \ k I
\ 00 I \ 00/ 00;

while for very larp:e F , ~~quation 1)1 can be rewritten as
s

3:quations 10 and 21 are easily solved simultaneously
dip:i ta.l com'puter to ~i.ve the ~enera.l solution, k =

o
Fip:ures 4a and b show resDectively the dependence of
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P for De.vements (b < 0) and for b > 0 formations. Por
s

the case b < 0 , the function k o exhibits a local minimum

value for some value of F (or x ).
s e

~he dynamic stiffness defined by Squation 2u depends on
the damping constant C of the pavement as well as on the
effective sprin~ constant k. This dampin~ constant is
not in p:eneral equal to the damplntr constant for the homo­
geneous linear elastic half-space, C ,that was defined in

H

the rtamping constant expression. A theoretical calculation
of C was not made in this paper; however, the nonlinear
elastic nature of flexible pavements gives rise to a simple
method of estimating the value of the damping constant.
Equations 23, 3l~, and 36 show that when w "= we' the dynamic

stiffness has the critical value I

('-j4)

:::: "\j 2Cw
e

Therefore a measure of the dampina constant can be determined
directly from the dynamic load versus deflection curves by
meRsurinp' the critical value of the dynamic stiffness. An
Ilnproximation to the value of the damping constant is thus
£riven by

S
eC"=---

~ 2we

S. SUMMARY. A nonlinear mechanical model descrlbln~ the
dynamic nroperties of a pavement-vibrator system has been
developed which desert bes the nonlinear dynR.mie re~lJOrlse of
R pavement to a sinusoidal loading applied to the pavement
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surface. Theoretical exuressions are developed for the
dynamic stiffness of a pavement measured by a mechanical
vi brator which are expressed in terms of the stat,tc load,
dynamic lOR.d, and 'Tlbrator baseplate size and in terms of
t.he linear and nonlinear pavement Darameters. The non­
linear mechanical model ~ives an analytical correlation
amon~ the values of the dynamic stiffness measured by
rtlfferent vibrators at the same pevement location. Ex­
perimental tests were done to determine the validity of the
theoreticB.1 Davement response monel. The experimental and
theoretical results are in ~ood agreement (Reference R).

The nonlinear mechanical model developed in this paper
~ives the follow1n~ conclusions:

a.

12·

c.

Third- and fifth-order nonlinear terms 1n the
displacement are required to describe the
dynamic load-deflection response of actual
pavement systems.

The theoretical nonlinear oscillator model of
oavement response to a dynamic loadin~ shows
that stiff Davements have a more linear dynamic
load-deflection curve than flexible pavements.

At specific critical frequencies the dynamic
load-deflection C1.Jrves become essentially
linear at low valnes of the dynamic force.
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Application of the Thuory of Slender Curved Rods

to the Analysis of Elastic Yarns

N. C. Huang

The Mathematics Research Cei1ter
University of WIsconsin-Madison

A systematic formulation of the linear theory of elastic slender curved

rods is presented. First, equations of equilibrium for stress resultants

and bending and twiSUDg moments are derived utilizing Serret-Frenet

formula. Thc generalized strains are them defined according to the principle

of virtual work. Constitutive equations are obtained based on the Euler-

Berno~lli-ScIntVcnant ,)ssumptions. The theory of slender curved rods

thus formuJated is applied to the i:mi3Jysis of the ,::xten;=;ional deformation

of elastic tvvo-ply filament yarns and continuous filcifficnt yarns~ with the

filaments in the yarns treated as slender curved rods. In comparison with

previous works on the stress analysis of yarns j it is found that the approach

adopted here has the advantage of fewer aS3umptions and hence could provide

more accurate results and better geometrical and physic:il insights into the

problem. In this study, the yarn elongation C:l,'1d fili'unent stresses are

determined for yi'lfIlS, with various helical angles. The effect or superposition

of a twisting moment on the axiel extension is also inv'}stigated.

Sponsored by the United SUtes .TiJ'my under Contract No. Dl\-31-1Z4-I\R.O-D-462.
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1. Introduction

The theory of the extension of elastic filament yarns has been

investigated by a number of authors [ 1-4 J• For purpose of simplifying

the analysis, assumptions a.nd approximations are usually imposed.

Wilson and Treloar, in the.ir study of the two-ply filament yarns, employed

the theory of the finite deformation of a straight circular cylindrical

rubber rod subject to combined axial extension and torsion [1]. As the

filaments in a twisted yarn are in reality not straight, corrections had to be

made in Wilson and Treloar's analysis for the effects of nonctrcular cross sec-

tion and lateral pres sure between filaments. In the studie s on the extens ion

of continuous filament yarns with circular cross sections [ 2-4], the

following assumptions ure imposed. (1) The cross .section of each fiber

is assumed to be infinitesimal and the configuration of each fiber is

considered to be perfectly helical with constant radius and the same

number of turns per unit length of the ¥Elrn axis. (2) l'h8 fractional

contruction in yarn diametor is assumed to be uniformly distribut8d across

the yarn. (3) The shoal' forces and mOlT\~nt& acting on '111 faces of the

yarn clement are neylected. (4) The st.osses at any point in the yarn

are as surned to be constant in flU directions at ri.ght angles to the fiber

p" ".~-~"--_.- ~ .............~~-~~~._-_~_.,.I'_.....~'-
Sponsored by the UnitGd Stutes Army under Contract No. Dj1.- 3l-124-AHO-D-iJ62.
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axis. Assumptions (2)-( 4) are employed for convenience of analysis.

Their validity is, however, uncertain.

In this paper, we shall establish a more accurate theory for the

extension of long elastic filament yarns. The filaments in the yarn are

treated as elastic slender curved rods wi th the center line of the rod

travelHng along a circular helical path. Stress analyses of yarns are

made based on the theory of slender curved rods [ 5]. In order to give a

comprehensive presentation, a survey of the formulation of the linear

theory of elastic slender curved rods is first given. The rod is treated

as a one-dimensional body. Equations of equilibrium are derived utilizing the

Serrct-Frenet formula. The strain measures are defined by the principle

of vj.rtual work in a manner similar to that used by Sanders in his formula­

tion of nonlinear theories of shells [ 6]. Constitutive equations are

derived based on the Euler-Bernoulli-Saint Venant assumptions.

The linear theory of slender curved rods thus formulated has bcen

applIed to the investigation of the small extension of two-ply filament

yarns r7] and continuous filament yarns [8]. A survey of these studies

is presented in this paper. The yarn elongation and fHamont stresses

ar/3 analyzed for yams with various geometries. Th8 effect of super­

position of a twisting moment on the axial ext2nsion is also discussed.

In comparing OUf investigation with previous work s [ 1-4], it is found that

the andlysis presented here has the advantage of the relaxation of as sump­

tions and the elimination of approximations. PJso, it is found that the

approach adopted here cun provide better geometrical and physical insights

into the yarn problem s.
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2. Linear Theory of Slender Curved Rods

Let us consider a slender curved rod. The rectangular Cartesian

coordinates of any point on the center line of the rod are

X, ::: x,(s) ,
1 1

i::: 1,2,3, (2. 1)

where s is the arc length measured along the center line of the rod

from a fixed point. The infinitesimal arc length ds satisfies

2
ds ::: dX,dx. , (2.2)

1 1

where the repeated indices represent summation. Let us denote the

unit tangential, principal normal and binormal vectors by x", 11, and
1 1

v i respectively and the principal normal curvature and the torsion of

the center line by K and T respectively. Hence

>C, :: x! , (2.3)
1 1

where prime represents the differentiation with respect to s. By

Serret-Frenet formula, we have

x" ::: Kfl, , (2.4)
i l.

J.l! ::: TV, - K>C, (2. 5)
1 1 1

v! = -TJ.l, (2. 6)
1 1

In the following, we shall consider only the small deformation of the rod.

Therefore We can use the undeformed rod as our state of reference.

Let us denote the components in the x'i' fl
i

and v. directions
1

by the subscripts 'A, fl and v respectively. The distributed force

and the distributed moment m,
1
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written as

Pl' =P,>".+PIJ..+PV.,
fI. 1 fJ. 1 11 1

m..:::: m >... + m fJ.. + m tI.
1 >.. 1 IJ. 1 l' 1

(2.7)

(2.8)

The stress resultant F. and the moment M. acting at any cross section
1 1

of the rod can be expressed as

F. = F, "i + F IJ.. + F 11. ,
1 1\ f.l. 1. 11 1.

M. = M\ >... + M IJ.. + M v. •
1 1\1 jl1 vI

(2.9)

(2.10 )

Also, the displacement vector

the rod can be written as

U. at any point on the center line of
1

u. = u\ >... + u f-L
i

+ u v. . (z .11)
1 1\ 1 f-L v 1

Let us consider an element of the rod of length ds. The conditions

of equilibrium of all forces and moments acting on the element lead to

the following equations:

F~ + p. = 0 ,
1 1

(2.12)

(2.13)

where e
ijk

is the permutation symbol. After substitutions of equations

(2.7)-(2.11) into equations (2.12) and (2.13) and utilization of equations

(2.4)-(2.6), we obtain the following equations of equilibrium of forces

F' - KF
f-L + P" = 0 , (2.14)

"
F' + KF - TF +p = o , (2.15)
Ii >.. v f-L

F' + TF + P = 0 , (2.16)
v Ii v
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and the following equations of equilibrium of moments

M' - KM t m :: 0
~ ~ A '

M' + KM- TM - F + m ::: 0 ,
fJ. A v v ~

M' + TM t F t m ;:;; 0
v fJ. fJ. v

(2.17)

(2.18)

(2.19)

Let tiu 7 eu 7 au be the components of virtual displacement at
A fJ. v

any point on the center line of the rod and. ocp.. ocp and ocp the
lI," fJ. v

components of virtual rotation of any cross secUon. By equations of

equilibrium (2.14)-(2.19), we have

L
f [au (F' -KF +p )t6u (F' +KF -TF +p )tou (FI +TF +p)
o >-A fJ. >- f.1fJ. >- v fJ. vV Il Ii

t oq; (M' +TM +F +m )]ds ::: 0 ,
V V ~ f-l v

whete L is the totallength of the rod. After integration by pi?rts,

equations (2.20) can be written as

L
f (p 6u +p 6u +p 6u tm FJ(p tm 6cp +m 6(,0 )ds
o AA Il~ v v A.A Ilf-L V;J

Is:::: L
t (F ou t F 6u +F au t M 6 cp +M orp t M 6 rp) 0

A '" fJ. fJ. v v A A f.1 f.L v v s:::

L
:: J [F 6(u l -KU )+F 6(u' tKU -TU -cp )tF 6(u' tTU tcp )

o A A. f.1 Il Il A. v v v v fJ. Il

(2.20)
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The left-hand side of equation (2.21) can be identified as the external

virtual work. Hence, by the principle of virtual work, the right-hand

side of equation (2.21) is the internal virtual work. From equation (2.21),

we may define the following strain measures for the slender curved rod:

e ::: u l - KU
A A !J. '

'Y ::: U I + KU - TU - cp
!J. p. X. v v'

'Y = u' + TU + cp
V v fl fl'

(2.22)

(2.23)

(2.24)

-€I ::: «" - KCP
A. fl '

(2.25)

K ::: 'PI - Tcp + KCP\ ,
fl fl v 1\

K ::: rpl + Tcp
V v fl

We shall call eA. the axial strain, 'Y!J. and 'Y
v

the components of

(2.26)

(2.27)

transverse shearing strain,
-
8 the twisting strain and K and K the

fl v

components of bending strain.

Based on Euler-Bernoulli-Saint Venant assumptions, the displace-

ment components at any point in the rad can be derived by the super-

position of deformations due to the displacement components at the

center line of the rod, the components of rotation of the eros s section

and the warping of the cross section introduced by the twist of the

rod. Let us consider any cross section of the rod. Set the ongin at

the center of the cross section and two coordinate axes in the fl
i

and vi

directions. The coordinates of any point in the cross section are denoted
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by fl and v. Let i ,i and i be unit vectors i,n the tang8ntial,
s f-l v

principal normal and binormal directions respectively. The displ2.cement

vector at any point in the rod is given as

~ :: (u - flrp - wp - 8J;1'i + (u - v <PJi + (u + f-lCP ji ,
A v fl 'S fl I\.IJ. V fl.\!

where ~:: ~(s, f.!., v) is a warping function associated with the twist

(2.28)

of the rod. It can be shown that when the di.mension of the cross section

of the rod is small in comparison with both 11K and l/T, the non-

vanishing components of strain at any point in the rod can be expressed

as [ 5]

- [ Ow Ol!; -
e =e +vK -f-lK +4>81 + T(V--~L:--)+~IJ8,

55 A f-l v Df-l i:Jv

1 _. at!!-
e .- -2 (y + f-l8 +-, 8)

sv v ov

The material of the rod is considered to be linearly elastic. The stress

(1..29)

(2. 30)

(2. 31)

components o (f and (f

ss' sf-l Sl'
are related to the strain components

and by

(J :: Ee
55 5S

(J = 2Ge
S~l sf.!.

(J = 2Gc: ,
sv sv

(2.32)

(2.33)

(2.3·1)

where E and G are Young's modulus and shear modulus respectively.

The cross section of the rod is assumed to be doubly symmetrical ',vith
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respect to the coordinate axes. Hence, the warping function 1-fJ is

an odd function of f.1 and v. The constitutive equations can be

obtained by the following area integrals extended over the cros s section

of the rod:

-
FA ::: J CJ dA::: EA£A + EDTG , (2.35)

5S
A

F ::: f (T dA::: GAy , (2.36)
fl A sf.L fl

F ::: f CJ dA::: GAy (2.37)
v sv v '

A

f (fJ·a - vo- )dA:::
- (2. 38)Mx. :::: GJe ,

A SV Sfl

1'A ::: f vo- dA::: EI K , (2. 39)
~l ' S8 fl flA

•

M ::: r flCr dA::: EI K
v ~ ss v v

A
(2.40)

where A is the cross-sectional area,
2 r 2

I ::: J v dA, I ::: J f.l dA are
f.L A v A

moments of inertia of the cross section about the 11 and v axes

respectively,

(JI 8' 2 2
J ::: J (fl ~ - v ~ + f.l + v )dA

A

is the torsional constant of the cross section and D '" I + I - J.
f.l v

Equations (2.14)-(2.l9L (2,22)-(2,27) and (2.35)-(2.40) are the

(2.41)

governing equations of the small deformation of slender curved rods. The

boundary conditions can be obtained from equation (2. 21). We find that at
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both ends of the rod, it is necessary to prescribe (1) F~ or u
A

'

We shall employ these field equi)tions to ani)lyze the

(2) F or u ,
f-l f-l

(6) r,,1 or cp •
y y

( 3) Fy or u y' ( 4) M A. or !p ~' ("i) M or cp ,
f-l f-l

deformation of elastic yarns subject to uxial extension in the following

sections.

3. Extension of Elastic Two-Ply Filament Yarns

Let us consider a two-ply filiJment yarn subject to an axial force

F and a twisting moment M. We consider M to be positive 1f :it is

in the direction of the twist of the Yarn. The cross section of each fila-

ment in the undefonned state is assumed to be circula.r with rad.ius a.

The center line of the filament is regarded as helical with the length of

one turn of the twist measured alor,g the axis of the yarn as h::: 2rrk

where k is a constant. Let us denote the distance mei)sured frorr. the

yarn axis to any point on the center line of the filament by r and the

helical angle of the center line bye. The principal normal curvdture

and the torsion of the center line of the filament are found to be

1 .
K = - S1n 0,

p

1
T ::: -cos 0 ,

p
(3.1)

where
22.1.

p ::: (r + k ') 2 and
-1 r

8 ::: tari k The unit vector A makes

-an angle 8 with the yarn axis. Tl18 unit vector lJ. is in the rc.dicl!

direction and toward the yarn axis. Hence the angle between f.l- and

the y~1rn axisis 1T /2 .
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The filament is considered ~o be a one-dimensional body of

infinite length. We shall apply the field equations of slender curved

rods to analyze the deformation of the filament. In the equations of

equilibrium of our problem, the derivatives of the stress resultant and

moment with respect to the arc length of the filament must vanish. Hence,

by equations (2.14)-(2.19), it is found that

F K - p\= 0 ,
fJ. "

F\K-FT+P =0,
I\. v fJ.

FTtp =0
fJ. v '

M K - m = 0
fJ. A '

M K-M T-F +m
A v v fJ.

MTtF +m =0.
fJ. fJ. v

(3.2)

(3. 3)

(3.4)

(3. 5)

::: o , (3. 6)

(3.7)

The strain-displacement relations are given by equations (2.22)-(2.27)

and the constitutive relations are given by equations (2.55)-(2.40) with

2 'IT 4 'IT 4
A = 'IT a I = I = I =- a J::: - a and D = o.

'fJ. v 4' 2

The overall equilibrium of the internal forces and the applied force

F require s that

F = 2(F
A

cos e tf
v

sin e).

Similarly, the overall equilibrium in moments requires that

Since fJ. is in the radial direction and the yarn is long, the

components u and cp mu,:;t be independent of the arc length of the
I-L fJ.
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filament. If we set the origin s::: 0 at the mid-point of the entin:"

yarn, we may write

(3.1.0)

where c
1

, c
2

, c
3

and c
4

are constants to be determined. After

substitutions, we obtain

FA. =::: EA( c1 - U fl K} , (3.11)

F - GA( C K - C T - C }s (3.12)
fl 1 2 4

F :; GA(c + u T + 4? } (3.13)
v 2 fJ. fJ.

MA. ::: GJ(c - <p K) (3.14)
3 fJ. '

M ::: EI(c 3K - c 4T) S (3.15)
fl

M :::: EI(c4 -+ 4?fJ.T} • (3.16)
v

Since the yarn is assumed to oe long, p},. and m"" iJre constant.

From equations (3.2) iJnd (3. 5), it is seeD. that F and M are also
fl p,

constant. However, equations (3.12) and (3.15) indicate that F and
fl

M are proportional to s. Therefore, we conclude that F ::: M ::: o.
fl fl fl

From equations (3.12) and (3.15), we find that

T
C ::: --(c K - C T)

3 K 1 2

c 4 ::: c
1

K - C 2T ,

and from equations (3.2), (3.4), (3.5) and (3.7), we find that

p ::: p ::: m ::: m ::: O. Hence p is the only nonvanishing contact
},. v },. v fl

pressure between the filaments, i. e., the common norm,)l to the line of
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contact of the two filaments is in the radial direction . Vie conclude

that the line of contact must coincide with the yarn axis and the two

filaments wind about the yarn axis following helical paths as shown

in Figure 1. Accordingly, we have

r =: a, p = a esc 8 .

In the deformed state, the filaments contact by a curved surface.

(3.19)

The analysis of this type of contact problem is difficult. In our analysis,

we assume that the contribution to u due to the elastic contact of
f..l.

filaments is proportional to p. Hence, we have
f..l.

u
f..l.

(3. 20)

filament througi1 Pois son f s effect.

where (T is Poisson's ratio and s is a positive constant. The first

term in equation (3.20) is due to the contraction in diameter of the

The distributed moment m can be
~l

interpreteci as the moment caused by friction due to the relative motion

of the filaments. The magnitude of m depends on the width of the
f.l

contact surface. Under the assumption of small extension, W8 may set

m - O.
f..l.

After substitutions, equations (3. 3)~( 3.6) can be written as
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A"XIS

Figure 1. Configura tion of a Two Ply Filament Ydrn
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Let ue and u be the displacement components of the filamentz

in the tangential and axial directions in a cylindrical polar coordinates

system. It is found that

ue ::; ;(ru,,- - kU) ::;

1u ;; - (ku + ru ) ;;
z p X. v

(c I< - C T)S1 2 (3.23)

(3.24)

Hence the rotation of the cross section of the yarn about its axis is

W;;.P-..(CK-CT)S.
Z r 1 2

Let us denote the extension and torsion of the yarn per unit length by

* *u and w respectively. We have

*u ;; c
1

+ c
2

tan e ,

(3.25)

(3.26)

(3.27)

By equations (3.17), (3.18), (3.26) and (3.'27), we Can express e
l
, c

2
,

;:~ *
c

3
and c

4
in terms of u and w • By equations (3.11), (3.13), (3.14),

(3.16), (2.37) and (2.24), weare able to express Fx.' F
v

' M>" and M
v

8. A set of simultaneous linear equations of

>:::: ==;-:

as linear functions of u , w , u
IJ.

on

and '( with coefficjents dependent
v

,;, i.e
U , w ,u and '(

fJ. v

can then be derjved from equations (3.21), (3.22), (3.8) and (3.9). Let

us introduce the following dimensionles s quantities:

(3.28)
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The helical angle 8 is related to the pitch parameter a by
-1

8 ::: cot Q'.

Our governing equations can be written in a form of AY ::: Z where

':' ,;, to< T T
Y ::: [u V u y ] , Z = [OOlm] and A is a four by four matrix whose
'" '"

elements depend on e.
jl~ W

For any given values of 0", a, So and m, we can find U', V"',

*u and y by solving simultaneous equations. The axial force carried

by each filament can be found from equation (3.11) as

to' 2 ~~ 2
f = U cos e + V sin e cos 8 - u cos e

In our study, we adopt 0"::: 0.4 and s::: 1. 07. Two problems

are being considered here. In the first problem, the ends of the yarn

are clamped. This corresponds to the case of tension test of yarns. In

(3.29)

this case,
.,;.

V·'· :::: 0 and * ~:::
U , u, y and m are unknown. The

-,-
calculated values of U"', m and f are plotted as functions of Of in

Figure 2 by the solid lines. Note that when Of approaches infinity,

~:~

both U and f approach a limit one. When a is large, the filament

are nearly straight. When Of is small, the elongation of the yarn is

essentially governed ay the change of the helical angle. Between these

two limiting cases, the value of m may reach a maximum value as

shown in Figure 2.

In the second problem, the ends of the yarn are froe to rotate. This

case occurs when a vertical yarn is fixed at the upper end and extended

by a weight attacned to the lower end. In this problem, m = 0 and
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* * * *u , v , u. and yare unknown. The calculated values of U V

and f are plotted against (i' in Figure 2 by the dotted lines. The

,1<

negative value of V' shows that an untwist OCC'-lrs during extension.
~:(

When Q' a.pproaches infinity, both U and f approach a limit one

>I'
and V approaches zero. For given values of 0", a and ~, the

':' ~:( *
quantities U, V , u and yare linear functions of m. It is found

that U decreases wUh increasing m. When m is sufficiently

large,
-'.",'

U becomes negative. The value of m
i,~

for U = 0 is denoted

by m . It 1s found that m decreases with incroasing a as shownc c

in Figure 2.

4. Extensi9r, of Elastic Continuous...Iilamel}t Yarns

Let us consider an idealized infinitely long yarn of circular eros s

section with radius R subject to an axial fo;:ce f and a twisting

-
moment M at both ends as shown in Figure 3a. The yarn is composed

of a large number of helical fibers. The length of one turn of twist of

all fibers is regarded as constant and is denoted by h = 21Tk. We shall

treat each fiber element as a slender curved rod of helical configuration.

The cross-sectional area. of the yarn element cut by a pJ ane perpendicular

to the yarn aXis is rdrdrp. Hence the cross-sectional ,)[E.:a. of the element

perpendicular to its own axis is dA;;:; r cos Od!'dq], where 8 is the

helical angle of the elemer~t. The principal normal curvature and the

torsion of the element are again given by equation (3.1). The components
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The

of the stress resultant acting on the cross section of the yarn element

are denoted by dF \.' dF j.l and dF v and the components of the moment

acting on the cross section are denoted by dM\., dMfJ. and dM
v

'

components of the distributed force and the distributed moment per unit

length of the element are dp" dp , dp , dm" dm and dm . Put
I\. j.l V "fJ. v

~ d
( ) :::: ciA ( ). Equations of equilibrium for a long yarn are similar to

equations (3.2)-(3.7). They are

'"F K - Pt..
:;; 0

j.l
,

~ '" ""FAK - F T +p :;; 0
v j.l

,
'" '"1:' T +p :::: 0~ ,

fJ. v

'" '"M K - mt.. = 0
fL

,
'" '" ~

MAK - M T - F +m :::: 0
V V IJ·

,
~,

"" ~

M T 1 F +m = 0
f.L fJ. v

The strain-displacement relations are again given by equations

(2.22)-(2.27). Based on the same reason as that used in the analysis

of the two-ply filament yarns, it is found that equation (3.10) is also

valid in the case of continuous filament yarns.

Let us denote the normal compressive stresses in the fl and 11

(4.1)

(4.2)

(4.3)

(4.4)

(4. 5)

(4.6)

d~rections by P and Q, the normal strain components in the !J. and v

directions by e and e and the shearing stress and shearing strain
f.L v

corresponding to the A., v directions by T and e Ali' Here, we assume
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that there is no slipping between fibers. Hence T is caused by

friction. The stresses acting on an infinitesimal yarn element are shown

in Figure 3b. As we shall see later, all stress components not shown

in Figure 3b are actually zero.
,..,

From Figure 3b, it is found that PIJ.

,..,
and m are related to P, Q and l' by

IJ.

dP 1 Z
P ::: -- + - (P - Q co s 8) ,

IJ. dr r

P.1 :::1'.
f.L

The cross section of the yarn element is infinitesimal. It can be

(4.7)

(4.8)

regarded as doubly symmetrical. The fiber is considered to be elastic and

transversely isotropic. We have the following cons ti tuti ve relations:

,.., Z -
F ::: alE>,. + az(EIJ. + E) + ErdTO , (4.9)x.

p ::: -(azc>,. + a3CIJ. + a4c) , (4.10)

Q :c -(cL.,E>,. + a 4E + a3c ) , (4.11)
t.., . f-l v

,.., 1 (4.12)F :::
a 5'if.L '!J. Z

F ::: 1
as'l'v (4.13)

v 2

T ::: asE>,.v ' (4.14)

where a,(i::: 1,2, ... ,5) are material constants,
1

is the elastic modulus of the fiber in the tangential direction,

Z
[d ::: (I + I - J)/A, I and I are the moments of inertia of the cross

!J. v IJ. v

section and J is the torsiona.l constant. In comparing equation (4.9)

with (2.35), it is found that an additional term of a
2

(c + c) is added
!J. v
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to include the effect of the normal strain components in the transvef[)e

'" '"direction. The constitutive relations for M\., Mf.1 and M
v

are

M~
1 2-

:::: '2 asr ,s,

1\1 2
--, Er K

f.1 'f.1 fJ.

'"
">

M :::: Er'-K
v v v '

(4.15)

(4.16)

(4.17)

are radii of gyration corresponding to the momentswhere rx.' r f.1 and rv

of inertia J, I and I respectively.
f.1 v

By a similar procedure as what we used in the analysis of tV'lo-ply

filament yarns, we can prove that F :::: M :::: p ::: m ::: O. We can
f.1 f.1 X. X.

also show that equations (3.26) and (3.27) still hold in this problem.

By substitutions, we obtain

2
rd'~ 3 ~

+ E --( w cos 8 - sin 0 cos 0) ,
p p

(4.18)

"- :> .'- u
-" -.' - -l!: sin 0)p =- -a)u cos"S + rw sin 8 cos e .. a E - a 4E v ' (4.19)

p 3 f.1

~:-: 2 .'- u-,'
- 1 sin 0) (4. 20)Q :: -uz(u cos 8 + rc...J sin 8 cos e - a I:: - a 3£v'p 4 f.1

(4. 21)

(4.22)

'"
M

v

2 >:; ~
::: Er"(w sin 8 cos 0 + cos e) .

v p
(4.23)
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From equations (4.2), (4.5), (4.7), (4.8), (4.18), (4.22) and (4.23),

we obtain

u
1 51'n * 2 ':' ...J:l:e[ ul(u cos e + rw sin 0 cos 8 - sin 8) + a 2(£ + e )]
p p, fJ. v

T dP 1 2
- ; cos e + d; +~ (P - cp cos 8) ::; 0 .

In the derivation of equation (4.24), we consider that the cross section

of the yarn element is infinitesimal and neglect those terms involving

When the ends of the yarn are clamped, under a pure extension,

(4.24)

the helical angle of fibers decreases and separation between fibers may

-
appear in the binormal direction in the region r > r. However in the

central region r < r, this separation does not occur. In thi.s region, it

):< ;lo:(

is possible for us to find e ,£ and £\ in terms of u ,wand
fJ. v "v

u by the transformation of the strain tensor from a rectangular Cartesian
fJ.

coordinates system to the (\., f-l, v) system. It is found that in the region

without separation of fibers,

u 2 ,;, 2 :;,
£ ::; - - sin e + u cos e + rw sin e cos 8 ,

A r

du
£

--H:-- drf-l

u
2 '" 2 ~:(:

...J:l: -.'
£v = cos e + u sin e - rw sin 8 cos e

r

u ~, r~' 2 2
£\v - -~ sin e cos e I- u sin 0 cos 0 + '2 w (sin e - cos e)
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Denote the ratio of the cross-sectional area of the void in the yarn

to the total cross-sectional area of the yarn by '{. Let us introduce

the following dimensionle s s quan titie s:

2 2 1
£ ::: r/R, ~:: fiR, c:: k/R, T](£) ::: (c + £ )2, 1'1

1
:::

(i =: 1, 2, •.. , 5) ,

- T](S), 0:. :::
1

a./E
1

~I, ~,~ ..I... ...~I

U." :: u"';f, V'" :: w"'Ro/f, p =: p/(Ef),

U ::: ufJ./(fR) , t :: tA/f, fA :: rA/(Ef) ,

d
q:: Q/(Ef), t:: T/(Ef) , ()'::d£(). (4.29)

.1.
','

Note that U :: 2E/E, where
y

the yarn. It is found that Q',::
1

E is the overall elastic modulus of
y

2
1 + ZaZ/(a3 + 0:4 ),

The governing differential equations for the deformation of the yarn

in the region without separation can be derived from equation (4.14),

(4.19), (4.20) and (4.24)-(4.27) as

u' -I- fnu + f
12

P + 9
11

U"r' + 9
12
/' :: 0 , (4. 30)

( 4. 31)

wnere f.. and g,. (i ::; 1,2 and j:: 1,2) are functions of a., c, T]
1) 1) 1

and ~. After u is determined, the fiber stress fA can be determined

by equations (4.18), (4.26) and (4.27) and the contact press~re q can

be determined by equation (4.20), (4.6) and (4.27).

-
For r > r, separation of fibers occurs in the binormal dirocti-on.

In this region, equation (4,27) aod (4.28) are no longer valid. However,

we may set Q:: T :: o. It is found that equations (4.18), (4.19), (4.25)
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and (4.26) are still valid but equations (4.20\ (4.7), (4.8) and (4.24)

must be replaced by the following equations:

,'- 2 ~!::
U

az(u'" cos 8 + rw sin e cos o - -I:!.: sin e) + a
4

€ + a
3

€ ::: o , (4. 32)
P f.l v

~ dP , f (4.33)Pfl
::::

dr
T

r '

~

(4. 34)ill ::: o ,
I-!

1 ~:' 2 ':' u dP P
- sin o[ al(u cos e -I- rw sin ecos 8 - ----H: sir. 8) +a

2
(£ +£ ) ] + -d +~:::: O. (4.35)

P p I-! v r r

The governing differential equations can be obtai.ned from equations (4.19),

(4.32), (4.26) and (4.35). These equations can be expressed in the

same form as equations (4.30) and (4.31). After u is determined, f>,.

can be found from equations (4.18), (4.26) and (4.32).

In order to solve for the diffcr8ntia1 equations (4.30) and (4.31),

we need the boundary conditions at r::: 0 and r == R and the continuity

conditions at r::: r. These conditions are

u (0) :: P( R) :::: 0
I-! '

u (r )::::
I-!

P(~-) ::

-+
u (r ) ,

~L

-+
P(r ) .

(4.36)

(4.37)

(4.38)

These conditions can be easily expressed in terms of u and u'. The

correct choice of £ must make q( S ) ::: O. This can be done by a

cut-and-try process.
,~

~,

In equations (4.30) and (4.31), two unknown constants U and

~,

V'" are involved. These constants are determined by the overall
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equilibrium conditions of the yarn. From Figure 3b, it is found that

the applied aXial force F and twisting moment M can be expres sed

by the following integrals:

R
F ::: 21T(1 - ,,) J [(F\ cos e + F sin e)cos e

o I\. v

+ (T cos 8 - Q sIn 8)sin 8]rdr , (4. 39)

R
M::: 21T(1 - ,,) l [(M A cos 8 + M

v
sin 8 + F>.,r sin 8 - Fvr cos e)cos e

+ (Tr sin 0 + Or cos O)sin 8]rdr .

In the derivation of equations (4.39) and (4.40), the rule of mixtures of

,,-dUuted single fiber property has been employed. By substitutions,

equations ("1. 39) and (4.40) can be written as

(4.40)

1
J H

2
ud£ + CnU':' + C1ZV':' + Flu(~) + G

1
u(1) - 1,

S

(4.41)

1 .
+ J H4uds + e

Zl
U':< + c

ZZ
V* + FZU(~) + Gzu(l) -

S

(4.42)

where H.(i =: 1,2,3,4) are functions of a" sand Tt, c" (i ::: 1,2
1 1 1)

and j ::: 1,2), F
1

and F2 are constants dependent on n., C, S, TJ
1

and Ttl and Gl and G 2 are constants dependent on a., C
1

and

Numerical solution is first sought for the case of yarns with clamped

ends. In this case, V = O. In our calculation, we use 0'1::: 1.16,
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In figure 4, the nondimensional radial displacement and the fiber

stress are plotted against the radial coordinate for different values

of c as indicated on the curves. The positions S = s are shown

by dark circles. Note that in the region without separation of fibers,

u(;) is approximately proportional to S. However, this proportionality

does not appear in the region with separation of fibers. As we may expect,

the maximum fiber stress occurs at the center of the yarn. It is found

that when c increases, the helical angle of the yarn decreases and

hence both the radial displacement and the maximum fiber stress decreases.

The contact pressure p(G) and q(s) and the shearing stress t(S)

are plotted against S in Figure 5. At the center of the yarn, p(O) = q(O)

and t(O)::; O. In the region of the separation of fibers, q(~) = t(s) ::; O.

The normaliz.ed axial strain U and the twisting mornent at the

fixed end fit are plotted against c in Figure 6. When c approaches

zero, the elongation of the yarn is dominated by the change of the helical

angle and hence both U and m
t

approach infinity. On the other hand,

"-
when c approaches infinHy, all fibers become straight. Hence U'"

approaches 2 and m approaches zero.
t

The relative modulus (RM) is defined as the ratio ElL In

Figure 7, the normalized relative modulus wi"'.:h respect to the modulus of

a yarn of helical angle 10 0 is plotted against the helical angle of the yarn.

2 .The curve based on a cos (l' approXimate theory [2] and the curve
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obtained by Hearle et a1. [3, -1] are also shown for comparison. The

experimental values are four..d to be scattered in the vicinity of the

theoretical curves as a result of sensitivity of the relative modulus to

material properties for different yams.

The yarn is also sensitive to the twisting moment applied at as

ends. It is found that the separated fibers tend to close again as a

result of the application of a positive twisting moment of small magnitude.

Our analysis car.. be applied to investigate the behavior of the yarn after
~I... ..JI

all fibers are closed. In Figure 8, the value of U'" and V'" for a yarn

with c::: 3 and closed fibers are plotted against m
t
, From those

curves, we can draw the same conclusion as whc.t we have made in the

proble1n of the two-ply filament yarns, i. e. the overall axial strain uf

the Yum is reciuced due to the superposition of an additional twisting

moment. When is sufficiently large, separation of fibers

may occur in the principal normal direction and buckling of the yarn may

be introduced, The investigation of the elastic stability of yarns is

beyond the scope of this paper,
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A MAXIMUM LIKELIHOOD DECISION ALGORITHM

FOR MARKOV SEQUENCES WITH

MULTIPLE APPLICATIONS TO DIGITAL COMMUNICATIONS

Artdrew J. Viterbi

LINKABIT Corporation

San Diego, CA 92121

Abstract

A maximum likelihood decision algorithm is described

for Markov sequences and independent observations. At

least six different applications of this algorithm to the

field of digital communications have been implemented or

proposed. The three most important, convolutional coding,

intersymbol interference, and voice compression, are

summarized and discussed.
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1.0 The Basic Algorithm

Decision theory, Bayesian or otherwise, has

classically been concerned with the testing of hypotheses

involving disjoint events, which are either unique or a

sequence of successively independent events. For example,

in reliability testing the hypotheses concern the quality

of the lot. In radar, it is whether a target is present

or absent, and if more than one target is to be tested,

successive events are taken to be independent. In block

coded digital communications M hypotheses regarding the

messages, or codewords of the block code, are to be tested,

but successive codewords are assumed to be independent

of one another.

On the other hand, there are numerous interesting

applications of decision theory for which the hypotheses

correspond to the states of a Markov chain. Figure 1.1

represents a fairly general system model of such applications.

For a memoryless channel each term of the observation

sequence depends only on the corresponding term of the

transition sequence. That is, y(k) depends only on ~(k)

and not on previous and successive transitions.
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State Sequence

x(O)x(1)x(2) .•. x(k) ... Memoryless
Markov Source -

Transition Sequence
Channel Observation Sequenc

~(l) ~(2) ... ~(k) •.. y(1)y(2) .•. y(k) •..

X <-> ~

e

N
01
W

Figure 1.1 General System Model

Initial State x(O, = a o

Final State x(L) = a o

Figure 1.2 _ State Diagram (only permissible transitions shown)



The Markov source generating the state sequence

and hence the transition sequence, which is in one-to-one

correspondence with the state sequence, can be depicted by

a Markov state diagram as shown in Figure 1.2. Only the

permissible transitions are shown; all others are assumed

to have transition probability zero. With very little

loss of generality, the initial and final states of the

source are both taken to be state ao ' In practice even

this requirement can be avoided. Superficially the model

of Figure 1.1 is similiar to the estimation theoretic

model upon which Kalman filtering is based. However, the

Markov source here generates a finite state sequence while

the estimation theoretic case involves a real sequence.

Table 1.1 contains a derivation of the maximum

likelihood or, more precisely, the maximum A Posteriori

decision rule. The key expression contained in the box is

derived on the basis of three simple observations.

(1) There is a one-to-one correspondence between

the state sequence and the transition sequence. Hence,

the vector ~ can be replaced by ~ at any point;

(2) the channel is memoryless and hence the

conditional probability of y(k) given ~(k) can be factored

out from the expression of the joint conditional probability

from 1 to K;
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(3) the source is Markov and hence the Kth state

depends only on the (K-l)th.

We then seek to maximize the expression within the

box to determine the maximum a posteriori probability

sequence terminating at state a. at time K. With the
J

definition of Ak and Ak , it then follows easily that the

maximum at time K to state a j must have been a maximum to

some state a., i E (1, 2, ••• , J), at time K-l. This gives
~

rise to the recursive algorithm shown at the bottom of

Table 1.1, where Ak (a j ) is called the path metric, being

proportional to the logarithm of the maximum a posteriori

probability for paths terminating in state a j at time K,

and it corresponds to a path which we call TIk (a j ). That

path must have as its last term the symbol a j and all previous

terms depend on the history of the path; that is, the states

at which it resided at previous times. Initial and final

conditions are derived from the fact that we have assumed

state ao to be both the initial and final state. Hence

the logarithm of the probability of a at 0 is 0, and for
o

any other state at time 0, it is -~. Similarly, the final

condition reflects the fact that with probability 1 the

final transition must be to state a •o
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Table 1.1 Maximum A Posteriori Decision Rule

1-1
State. Sequence x <-----> Transition Sequence ~ Observation Sequence y: t(k) + y(k)

x (0) = ao x(L) = a o

P{x(I) ••. x(K) jy{I) •••y{K) 1 '" P[x(l) ••• x(K), 1'(1) ••• y(K) J/P[y(l) •• •1'(K) J

P[y(1) ••• y(K), x(1) ••• x(K}] = P[y(l) ••• y{K), t(l} ••• f;(K)J = P[y(l) ••• y(K)j~(l) ••• ~(K)JP[x{l) ••• x(K)J

= P [1' (1) ••• 1' (K-1) If; (1) ••• f; {K-l)]P [y (K) If,; (K) IP {x (1) ••• x (K-l) I P [x (K) Ix (K-1) I

log pry (I) ••• 1'(K), x(II ••• x(K)] = log P[y(l) ••• y(K-l), x(l) ••• x(K-I) J + log{P[y{K) IF;:(K) ]P[x(K) Ix(K-l)]}

Define
~

f!.K (a j ) = Max log P [1' (I) ••• 1' (K) ,

all paths
terminating
at state a.
at time K J

~ A A

x{l) 00 .:«K) 1 = log P[y(l) ooly(K}, x(l) ... x(K-llajJ

Recursive Algorithm:

ajlx(K-1)

Initial Conditions:

Path Metric for state a j at ~-~e K
I:i A..... ,.

for path TIl< (a
j

) = x (l) x (2) ... x (K-1) a
j

Yi oj- 0

Final Condition:

A
L

(a. ... a.) = _00

~ J
Vj ;. 0



A pictorial view of the algorithm,which also

represents its mechanization, is shown in Figure 1.3.

Both the state metric and state path memory are stored in

registers which are continually updated. Thus, at time

K+I, for example, the path metric for state a 2 is chosen as

the maximum of the path metric at time K for state a l
incremented by the branch metric for the transition from

a l to a 2 , and of the state metric at time K for state

a 2 incremented by the branch metric for the transition

from a 2 to itself. Depending on which of these two terms,

which we call f l and f 2 , is greater, the corresponding

state path memory is chosen and incr2mented by a 2 , which

corresponds to the state that we are looking at, at time

K+l. Thus the registers for the state path memory are

shown of indefinite length and they grow linearly with

time. Even this requirement can be avoided in practical

systems.

We now proceed to describe three major applications

of the algorithm.
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Figure 1.3 Algorithm Implementation

IAK (a 3·)!
I1TK (a3 )

-+ a
o

)

AK+1 {a2 + a 3)

IAK (ao )I
lTIK(ao }

ao )AK+l(ao +

"'K+l(a2 -+ a 2)

'-A-K-(-a-2)-' State Metri~
jn

K
(a2) State P.ath Memory

AK+ l (ao -+ al'

IAK (a1)[

!lTK(a1 )

~ranch Metric AK+lfa1 + a 2)

N
U1
co

Example: AK+1 (a2 ) = Max {[AR(al , + ~K+l(al -+ a 2)], [AK Ca2) + AK+1 (a2 -+ a 2)]}

r r .
1 2

If r
l

> r
2

, ~K+l(a2) = 1TK(a1), a 2

r2 .; r1 , ~K+l(a2) = 1TK(al ), 8 2



2.0 First Application: Convolutional Codes

The most widespread and significant application of

the algorithm just described is for convolutional codes

which improve performance on a noisy channel. Superficially

a convolutional code generator is very similar to a block

code generator, as shown in Figure 2.1. The only difference

is that whereas a block code generator takes K successive

bits and generates N channel symbols, a convolutional

code generator enters one bit at a time into the encoder

register and generates n bits where n is on the order of

: in the block code case. Actually the diagram in Figure 2.1

can be generalized to the case where k > 1 bits are entered

at one time, but k is much less than K in most cases of

interest.

The convolutional coder can be regarded as a linear

finite state machine whose states constitute a Markov

sequence. In fact, the Markov graph of Figure 1.2 applies

to the convolutional code of constraint length K = 3, and

for all convolutional codes of rate lin the state or Markov

diagram is connected in a binary fashion; that is from

each state there are branches going to two states and branches

coming to it from two states. As shown at the bottom

of Figure 2.1, the state xO has branches going to Ix
~

and Ox where x is an arbitrary K-2 dimensional vector;
~ ~

similarly state ~1 has branches going out to the same two

states.
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Figure 2.1 First Application: Convolutional Codes

Register Length K-I

Block Code: Fill Register with K bits
Generate N Outputs
Rate R = K/N < 1

Block Length K

K r"nputs

Convolutional Code, Contraint Length K,
Input 1 bit at a time
Generate n outputs
R = l/n

N
O"l
o

Linear Mapping
:\TO c~annel

"

N Outputs

Linear Mapping
~hannE

n outputs

MAP Decision Rule:

Hypotheses <-> Disjoint Events

Classical Solution involves comparison of

2K likelihood functions or A Posteriori

probabil i ties

(May generalize to k < K inputs for each
n outputs: R = k/n)

MAP Decision Rule:

Hypotheses <-> Markov Sequences

2K- l States correspond to Register Contents

Permissible State Transitions:

XOVlX'

~l6o~
e.g. For K' = 3, state diagram of Fig~e 1.2



Table 2.1 represents the key asymptotic results in

comparing block and convolutional coding. For all but a

-very small rate region, the lower bound exponent E is

approximately equal to the upper bound exponent E. The

most important difference in performance between block and

convolutional codes is that whereas the block code

exponent Eb is a positive convex function for all rates

less than capacity, the convolutional code exponent Ec(R}

is concave for most channels, and certainly for all

channels of interest.

Figure 2.2, in fact, shows these exponents for a

typical channel (e.g., the additive Gaussian channel or

the binary symmetric channel). The complexity of the

decoder r, as already observed and indicated in Figure 1.3,

grows as 2K since this is the storage required as well as

the number of computations and comparisons per bit.

Similar observations can be made for block codes. Thus

the error probability decreases as r-E(R}/R. For this

reason convolutional codes outshine block codes of the

same complexity.

As a practical example, for the convolutional code

of constraint length K = 7 and rate 1/2, the required

channel signal-to-noise for a bit error probability of

10-5 is reduced by 5 dB compared to that required without
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N
O'l
N

Table 2.1
Performance Comparison

Block Coding Theorem (Shannon et all

For any memoryless channel and any K, 3 a block code of length K, rate R, and 2K codewords
for which the bit error probability

- (K/R) E
b

(Rl
PB < 2

where Eb(Rl is a positive convex function V R < C, channel capacity. Conversely, for
every code with these parameters

-(K/R) [Eb(Rl + o{K)]
PB > 2

[For most channels and most rates of interest, Eb{Rl = Eb(Rl]

Convolutional Coding Theorem

For any memoryless channel and any K, 3 a convolutional code of constraint length K, rate R,
and 2

K
-

l
states for which the bit error probability

- (K/R) fEC (Rl -0 (K) 1 .
PB < 2 where EC(R) is a positive function which dominates Eb(Rl V R < C

For most channels of interest (e.g- symmetric channels) EC(Rl is concava. Conversely,

for every code with these parameters

PB>
- (K/R) [l~c (Rl + 0 (K) ]

2

[For most channels and most rates of interest, EC(R) ~ EC(RlJ



For Typical Channel

E(R)

N
0\
W

Practical Resu1t:

~C(R)

Convolutional-

C

p := 2- (K/R) E (R)
B

Decoder Complexity r .- 2K

'p _ r-E(R)/R
•. B

R.

For K = 7, Rate 1/2 .convolutiona1 code on coherent Gaussian channe-l, required channel

signal-to-noise ratio reduced by 5 dB for PB = 10-5 relative to uncoded operation~

Equal complexity b10ck codes qain only 2 to 3 dB over uncoded operation.

Figure 2.2



coding; for block codes of the same complexity, the

reduction is only on the order of 2 to 3 dB. Actual

hardware with the above parameters and performance, wlich

is presently operational is shown in Figure 2.3. This

was developed by LINKABIT Corporation for the u.s. Army

Satellite Communication Agency at Ft. Monmouth. Of major

significance is the fact that this equipment is capable

of decoding at information rates up to 10 megabits per

second which are necessary for high capacity and multiple

access satellite communications. Figure 2.4 shows the

same decoder in the upper right hand corner, with the PSK

modern with which it was initially tested. The size of

the coder-decoder is approximately one-quarter of that of

the modem and yet it gains a 5 dB advantage over the modem

alone.
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3.0 Second Application: Channels with Intersymb0l

Interference

The second most significant application of the

maximum likelihood decision algorithm of Section 1 is to

the improvement of performance on channels which exhibit

intersymbol interference. such interference can be caused

by either of two physical phenomena illustrated by Figure 3.1:

(a) a bandlimited channel where successive symbols

are rendered dependent by the linear filtering characteristics

of the channel. The coefficients ak decay more slowly as

the bandwidth of the channel decreases. An example of such

a channel results from transmission of digital data over

bandlimited telephone lines.

(b)multipath channel, as occurs in HF ionospheric,

or tropospheric propagation. Whereas in case (a) the

coefficients ak are usually constant over a message

transmission or reasonable portion thereof, in case (b)

the coefficients are randomly time varying, although the

rate of change is generally low compared to the data rate.

In either case, the coefficients ak must be estimated

either initially or continually in order to establish the

model. Rapidly converging estimation algorithms for this

purpose are well known and have been thoroughly covered

in the literature. Once the model has been established,
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Figure 3.1 Second Application: Channels with Intersymb0l Interference

Discrete Baseband Model

Transmitted

a) Bandlimited
b) Multipath

N
0">
00

Noise Sequence

K
y(k)= L a.u(k-j)+n(k)

j=O J

a) For Bandlimited Channel {ak } are fixed

b) For Multipath Channel {ak }· randomly time varying. Estimation of parameters from

observations required - various algorithm~ with reasonably rapid convergence

Markov Model valid in either case



it is clear that the shift register generates a Markov

sequence. The difference between this and a convolutional

encoder is that the linear operations are over the real

number field rather than over GF(2). However, for a binary

information sequence, u(l), u(2) , .•. , u(K), in the register

the state of the input is the same as the state of the

corresponding input to a binary convolutional coder.

Hence, the same algorithm applies to trying to determine

what seq~ence was transmitted, given the received or

observed sequence Y(K), which exhibits both the effect of

the intersymbol interference and additive noise.

Table 3.1 illustrates the key theorem regarding the

performance of the algorithm for intersymbol interference

channels. Po is the error probability for the simple

memoryless additive white Gaussian channel, while PI

is the probability with intersymbol interference. The

coefficients Ku and K~ are relatively small constants,

independent of the channel energy-to-noise giN , ando

generally within an order of magnitude of each other.

For y = 1, the performance would be almost the same as

without intersymbol interference. In all cases, of

course, y 2 1, but the key result is that for K = 1

(i.e. the two tap case), y = 1. Hence, there is little or

no degradation when the mUltipath channel consists of two
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Table 3.1 Performance of Algorithm for Intersymbol Interference Channels

.Theorem (Forney): The Maximum A·Posteriori Decision Algorithm applied to a two-level

sequence received over channels with intersymbo1 interference yields a symbol error

probability

where K£ and Ku are independent of the channel signal-to-noise ratio (e/No)' (and are

generally ~ithin an order of magnitude of each other)
Nc: Po (e:/No) is the error probability without intersymbo1 interference .and y <1.

For K = 1 (2 tap case), y = 1

(Generalizes to m-leve1 input sequence)

Practical R~sult: Transmission over multipath channel with only 2 stronq paths can be

received with very little degradation relative to single path case.

(Applies also to data modems employing "duo binarylr or "partial response"

coding) •



strong paths and all other paths are negligible. For

telephone channels such a case is often artificially

generated by applying so-called duo-binary or partial

response coding, which creates a model consisting of only

two strong taps.

These results can be generalized to an m-level

input sequence. While no operational hardware exists

which applies these techniques, considerable experimental

work and simulations have been performed.
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4.0 Third Application: Digital Voice Compression

Potentially the most important application for the

future is to the compression of digital voice. In

Figure 4.1 the upper diagram shows the well accepted voice

synthesizer model used in conjunction with linear pre­

dictive coding. This is basically a modern digital version

of the model for the channel vocoder. The vocal tract

is modelled by a digital linear filter driven either by

an i.i.d. sequence of Gaussian variables or by a periodic

sequence, the latter representing voiced sounds and the

former unvoiced. Clearly then the output is a Markov

sequence, although not a finite-state one.

The lower half of the diagram is representative of

a large class of standard practical voice compression

techniques, including delta modulation, differential PCM,

and adaptive predictive coding. In the last, as in linear

predictive coding, the coefficients ao through ak are

estimated from short segments of the actual voice. However,

all· these techniques attempt to represent the voice by

means of the so-called binary residual sequence consisting

of + lIs. All the conventional techniques make decisions

to generate this sequence one term at a time, seeking to

minimize the mean square error for that term only. An

improved technique for which simulations and digital voice
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Figure 4.1 Third Application: Digital Voice Compression

Voice Synthesizer Model (Linear Predictive Coding) - {ak } must be estimated frequently
(every 10 to 20 millisec)

Simulated Digital Voice

~

~ Standard Technique for Delta Modulationj Differential PCMj Adaptive Predictive Coding

Voice

--~Mean Square Error
~~ to be minimized

Binary Sequence

Select binary sequence one term at a time to minimize MSE for that term only

Improved Technique: Select best path through Markov state diagram generated by linear
filter driven by binary sequence to minimize MSE for entire path

Performance and Practical Results: Subjective



compression experiments have been performed at LINKABIT

Corporation involves estimating the entire sequence using

the algorithm of Section 1 •. One may regard the digitized

uncompressed voice as the observation and one then looks

for the binary sequence (i.e., the path through the Markov

chain) which best replicates the observation, given, of

course, the model and its coefficients. The compressed

digital voice consists of the residual sequence plus the

digitized estimated coefficients {ak }. The voice decoder

at the receiver reconstitutes the voice sequence by passing

the residuals through the digital linear filter of Figure 4.1

with these tap coefficients.

Evaluation of this technique and.any practical

application thereof must be based on sUbjective results.

During the lecture a tape was played giving the relative

performance of the algorithm based on estimating the

Markov sequence as compared to the results of a more

classical adaptive predictive coding technique where each

term of the residual was determined individually. In

addition, the result of adding errors caused by channel

noise was shown to affect the algorithm very little as

-2long as the channel error rate was below 10 .
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5.0 Other Applications

Another area of application described in the

literature has been optical character recognition, where

English text was modelled by a first-order Markov source,

and the memoryless channel was represented by the optical

character recognition device. The algorithm has also been

applied to the demodulation of minimum shift keyed (MSK)

modulation and to certain phase tracking problems. Any

application which can be modelled as sho\vn in Figure 1.1

is suited to the maximum likelihood decision algorithm

described here. The breadth of its applicability is

remarkably wide, apparently spanning the gamut of modern

digital communications, which includes moderns, channel

coding and data compression.
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THE CALCULATION OF UNSTEADY SHEAR STRESSES IN GUN BARRELS

R. Yalamanchili

Research Directorate
GEN Thomas J. Rodman Laboratory

Rock Island Arsenal
Rock Island, Illinois 61201

ABSTRACT

Since the shear stresses at the wall are of primary
interest in gas dynamic erosion, an analytical technique
is formulated for unsteady shear forces by consideration
of the continuity and momentum equations of unsteady com­
pressible boundary layers. The continuity and momentum
equations are transformed into one governing equation by
the use of equation of state, power law velocity and
temperature profiles, and generalized Blasius' law of
friction. The single partial differential equation is in­
tegrated across the boundary layer to reduce by one the
number of independent variables (three). The resulting
hyperbolic-type partial differential equation is transformed
into two ordinary differential equations by the character­
istics method. These equations are integrated to predict
the results in a 30mm weapon system. The results include
not only various boundary layer thickness parameters but
also the shear stress at the wall or skin friction coefficient
which is large near the breech and decreases in the flow
direction except near the projectile. The skin friction
coefficient decreases with increase in time. The shear
stress at the wall is of the order of 100 psi.
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INTRODUCTION

The shear forces are not only important in the cal­
culation of drag but also in the formulation of force balance
in erosion models. The shear stresses also play an important
role in predicting the heat transfer provided that a valid
analogy between skin friction and heat transfer is available.
The shear stresses acting on the bore surface are essential
to formulate and predict the gas dynamic erosion in gun
barrels. There are now available numerous empirical or
semiempirical methods which provide reliable estimates of
turbulent skin friction for zero pressure gradient compressible
and incompressible turbulent boundary layer flows. However,
this is not the case for unsteady boundary layers. The state­
of-the-art in unsteady boundary layers and turbulence models
is quite limited. Therefore, any development of analytical
techniques with reasonable assumptions is of considerable
importance to engineers and designers. A symposium[l] was
held on unsteady boundary layers at Laval University. There
are also several papers, scattered in the literature, con­
centrating on numerical solutions[2] of unsteady boundary
layer equations. The similarity methods do not play an
important role due to severe restrictions on the generality
of the flow field. Apparently, there is no working tool
yet available to analyze especially the case of unsteady
compressible flow with arbitrary pressure gradients and free
stream conditions outside the boundary layer.

Yalamanchili presented the Rayleigh-Blasius incompressible
flow[3], shock-induced boundary layers[4], and projectile­
induced turbulent boundary layers[5] in AIAA, TICOM, and
ASME meetings, respectively. Even though the continuity,
momentum, and energy equations are considered in the analysis
of unsteady turbulent boundary layers[5], the density variation
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across the boundary layer is not considered due to tedious
derivations. However, another treatment of unsteady boundary
layers is considered. The transverse velocity component
can be expressed in terms of longitudinal velocity component
and density by the use of the continuity equation. The
density is expressed in terms of pressure and temperature by
the equation of state. Of course, the pressure is a given
quantity in any boundary layer where there is no interaction
between the viscous and inviscid flows. The temperature is
written as a function of the velocity boundary layer thickness
parameter and a nearly constant coefficient. Thus, the
energy equation is not necessary to close the system of
equations. It is to be noted that the temperature is not
of prime interest here even though it can be approximated
from the assumed functional relationship. Nikuradse[6] eX M

perimental data suggests power law velocity profiles for the
longitudinal velocity component. The single partial differ­
ential equation is integrated across the boundary layer to
reduce by one the number of independent variables. The
genera 1i zed B1as ius I 1aw 0 f f ric t ion, r e1at in 9 the she ar
stress at the wall and the longitudinal velocity distribution,
is utilized. The resulting hyperbolic type partial differ­
ential equation is transformed into two ordinary differential
equations by the characteristics method. These equations
are integrated to predict the results in a 30mm weapon system.
The results include not only various boundary layer thicknes$
parameters but also the shear stress at the wall or skin
friction coefficient.
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II GOVERNING EQUATIONS

It is convenient to use integral boundary layer equations
to apply the method of weighted residuals (MWR). The follow­
ing equation can be derived either by consideration of control
volume and setting conti~uity (mass) and momentum balance
for the same or by application of Prandtl's boundary layer
assumptions to the Navier-Stokes equations and integrating
the resulting equations across the boundary layer:

Momemtum Equation:

-~ Jdy - lW = a~ Jpudy + adx J pu 2dy - u1a
a
t J pdy-u ld

d
x Jpudy (1)

Where u = velocity component in x-direction, u1 = velocity
outside the boundary layer, p = pressure, p = density,
t = time and lW = shear stress at the wall.
Utilizing the following inviscid momentum equation

(2)

and the following identities

d ( ) = ap au 1at pu 1 u1 at + p at

(3)

the follbwing single governing partial differential equation
is obtained.

lW = ;t J (P1U1-PU) dy + ;x f pu(u1-u)dy + ~~l J (P1U1-pu)dy

(4)
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Nikuradse[6] measurements of velocity distribution in
pipes suggested the following form:

u v lIn_ = (L.)
U 1 <S

(5)

Where <Sis the velocity boundary layer thickness, function of
independent variables x and t, and n is a parameter depending
upon the Reynolds number based upon mean velocity and diameter
of the tube:

,

n 6 7 8 8.8 10

Reynolds 4xl0 3 2.3xlO lt 1.lxl0 5 1.1xl06 2 to 3.2
number millions

The equation of state and the fact that the pressure is
constant across the boundary layer yields the following re­
lationship for density:

Where T is the temperature and the subscript 1 indicates the
quantity outside of the boundary layer. If another power
law profile is assumed for the dimensionless temperature
(i.e., equation 5); and setting Tw equals zero without any
loss of generality, the density ratio (equation 6) may be
rewritten as equation (8).

(7)
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The variable ~ represents the temperature boundary layer
thickness and it is also greater than the velocity boundary
layer thickness 0 for the conditions in a gun barrel. Since
the dimensionless ratio of boundary layer thicknesses (~/o)

is fairly constant with a typical value of 2.5 and the expo­
nent m is large similar to n, it is a good approximation to
treat C as independent of x and t.

Prandtl discovered the relationship between Blasius'
law of friction and the velocity distribution due to
Nikuradse experimental data. If this relationship is gener­
alized to include arbitrary n, the following result is
obtained for shear stress at the wall.

't'w II If. p U2 II~ 2 P u2 (9)
T 1 1 (-!:!.l~ ;r~1i 1 1

\l

Where Cf is the skin friction coefficient and en is given
in the form of a table:

_.

n 7 8 9 10

en .0228 .0174 .0143 . 0117

. -

The U$e of equations (5), (8), and (9). the evaluation of in­
tegr4ls in equation (4), and algebraic manipulations will
yield the following hyperbolic type of partial differential
equation with only two independent variables, x and t.

(10)
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The coefficients P,Q,A,B,c,D, and E are given in the follow­
ing table for compressible flow and the case of constant
density across the boundary layer.

.
Coeffi ci ent Compressible flow Constant density across

p(x,y,t) the boundary layer, p(x,t'
I
I

n n
p

2m-n+mn n+2

Q 1 1m-l

A m-n+mn n+l
2Cm 2 -2-

,
I

I
.

1
1

1B 0 Im:T n+T 0

I
I

, Im-n+mn~l-C) 1c em 0 I n+l 0

i

0 m-n+mn(l-C) 0 I 1
Cm 2

I
n+1 0

n 0 I n
E 2m-n+mn (n+l )(n+2) 0

i

I

It is clear from this table that the case of constant density
across the boundary layer is not easy to derive from the general
case·of compressible flow. The following table is given to
show the effect of variable density on coefficients.
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m= 6, n = 8

IThe Constant in Constant density across
Coefficient

1
Compressible flow the viscous layer

~
1I

I P ! .15 0.80!

II
! Q .20 1.00

A .64 4.50

B .20 0.11

c -.06 0.11

0 -.06 0.11

E .15 ! 0.09

Some coefficients decrease whereas others increase and the
changes are not proportional. Therefore, it is difficult
to assess the overall effect of variable density across the
boundary layer.

The simplified governing equation (10) can be reduced
to two ordinary differential equations by a procedure some­
times referred to as the method of characteristics. The
perfect or total differential can be written as

do = ~ dx + lR dtax at (12 )

The substitution of the partial derivative ao/at from
equation (10) into equation (12) yields the following:

do =(dx - PU 1 dt) Ei+ ulR dt
Q ax Q

(13 )

If the quantity inside the paranthesis can be set to
zero and these resulting curves considered as velocity
characteristics, equation (13) can be reduced to
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do _ u1R _ ( )dt - Q - f O,X, t

along the velocity characteristic

(14 )

(15 )

(l6)

Note that the same equations (14) and (15) can also be
derived by following the classical definition of characteris­
tics. The characteristics are defined as the curves along
which the derivatives of the fluid properties, such as ao/ax
and ao/at, are indeterminate. By consideration of these two
partial derivatives as unknowns in equations (10) and (12),
one can determine either one of these two unknowns by Cramer's
rule and set its numerator and denominator to zero in order
to obtain the equations (14) and (15), respectively.

III BOUNDARY LAYER PARAMETERS

The effects of the viscous shear layer are not only
induction of shear stresses on the wall but also involve
various effects on the gas flow. These effects can be repre­
sented by means of various boundary layer parameters. For
example, the displacement thickness (od) is defined as

o
od = J (1 - ~) dy

PIU I
o

which represents physically the distance by which the
external inviscid flow is shifted owing to the formation of
the boundary layer. The momentum thickness is defined as

o
Om = J E- J!.. (1- J!.. ) dy (17)

PI UI UI
o
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This parameter is useful in the determination of 1aminar­
turbulent transition and also indicates a measure of loss
of momentum in the boundary layer. The velocity thickness
is defined as

a
ov = f (1 - J!. ) dy (18)ul

o

The energy dissipation thickness is defined as
a

f L J!. (1 - J!. ) 2 dy
PI ul ul

o

(19 )

This parameter indicates a loss of mechanical energy occurr­
ing in the boundary layer. The enthalpy thickness is defined
as

(20)

o

All of these parameters can be evaluated analytically by the
use of equations (5), (6), and (8). The dimensionless para­
meters (od/o, om/a, etc.), are shown in the following table
for the case of compressible flow as well as constant density
across the boundary layer.
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Dimensionless
.

Compressible flow Constant density across
Parameter the boundary layer

I Displacement m-n+mn(l-C) 1
thickness n+l I

m-n+mn I
I
I

Cm 2n I

I
Momentum n
thickness (m-n+mn) (2m-n+mn) (n+l)(n+2)

I Velocity I 1
i

I thickness n+l n+l
I
!

I Energy Dissipation 2Cm 3n 2Cn
thickness (m-n+mn) (2m-n+mn) (3m-n+mn) (m+l )(n+2)(n+3)

Enthalpy ( 1 em) 0thickness n n+T - m- n+mn
:1

All of these parameters will be larger for the case of variable
density than constant density across the boundary layer.

IV GUN BARREL FLOW

The physical example is represented schematically as shown
in Figure 1. As the propellant gases expand behind the pro­
jectile, a boundary layer forms at the breech end and thickens
as the flow proceeds downstream. An unusual feature of the
velocity boundary layer is that it disappears as the projectile
is approached since all fluid at the base of the projectile
must be moving at projectile velocity. Mathematically, this
amounts to the requirement of an additional boundary condition
at a downstream location. The numerical techniques applied to
most boundary layer problems call for the specification of
profiles at the upstream end of the flow and allow a "marching"
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al~ng the flow direction. For the usual time-dependent
boundary layer problem, an initial condition to describe
the boundary layer flow at time zero and boundary conditions
as functions of time are required. No downstream condition
is added. The complete flow characteristics are unknown for
gun barrel flows. The experimental data are lacking because
of the moving projectile. This obstacle may be overcome
if one takes advantage of the similarities between the moving
projectile (small mass) and a moving shock in a shock tube.
Typical velocity profiles are also shown in Figure 1.

Fortunately, the final governing equations (14) and (15)
are decoupled. Therefore, one can solve these equations one

at a time. The path of the velocity characteristics are
described by a linear ordinary differential equation
(equation 15). If the LaGrangian approximation of interior
ballistics is invoked here to describe the free stream

velocity, u 1 ' the integration of equation (15) yields
equation (17).

( ~i) = (~i)

n(m-l)
2m-n+mn

(16)

(17)

where V = Velocity of the projectile
X = Location of the projectile

and subscript i indicates characteristic location initially.

For the characteristics located at the base of the projectile,
xi and Xi will be identical.

Since the location of characteristics at any time are

known from equation (17), the nonlinear ordinary differential
equation (14) is integrated numerically by iterative technique
due to lack of analytical possibility. The following steps
are in order (d8/dt = f):
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·All values are known at point i-l (could be initial or
previous time).

·The values except the dependent variable are known at point
i. An approximate value can be obtained by computing f at
point i-l, i.e., fi-l and the use of the relationship,
0i = oi-l + fi-l 6t.

'Compute now fi with the above approximate dependent variable
value. Finally, compute 0i = 0i-l + 6t (fi + fi-l)/2 .

. Repeat the above (last) step until the desired degree of
convergency is reached. The convergence to a final value
is very rapid. It is found that no more than three iterations
are required.

This procedure is repeated for each time step and for all

characteristics. The CPU time on IBM 360/65 is of the order
of 5 seconds for 11 characteristics and 16 time steps.

Since each characteristic curve can be calculated without
reference to adjoining characteristics, the accuracy of the
calculations for velocity boundary layer thickness, and in
turn various boundary layer parameters including the skin
friction coefficient does not depend on the number of character­
istics chosen. A large number of characteristics mean the
results are given at closer intervals in the stream-wise
direction, but these are not more accurate at a calculated
point. A large number of characteristics will lead to more
computational times.

The accuracy of the integration of the boundary layer

along each characteristic depends on the time interval chosen.
Accuracy and computational times increase with decrease in
the time step. Because of the iteration technique used in
each step, very small times are not required for good accuracy.

There is a singularity problem in the initiation of
calculations. Since 0 and V become zero initially (t=o) in

the important terms of the right hand side of equation (14)

or in the following equation, the integration procedure

described above fails.
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do _ ( 1) [2ACnu1! B ClPl c (1 dV 1) (D+2E)U 1 EU 1 ~P ]
(ff - m- (u 10) 2 l+n - ~ 3't - V Of - X - X - 15; ax

v

This is due to equation (16) and its variations:

a an _ 1 dV 1at;<" Ul - V dt - X

a an _ 1ax;<., u1 - X

To initiate the computations when 0 and V become zero,
equation (18) is approximated to

d° [ 2ACnu1 c au]
:J'"r = (m-l) 1: 2!Hn - - 1
U t (.~..!~) u1 dr

v

(18 )

(19 )

(20)

(21)

Taking u1 = A1 t, where Al is the local gas
position x and constant for the first time
(21) becomes

do m-l [Cn(m-n+mn)u 1 - (-to) (m-n+mn(l-C)]
'":r.:t =~ U °2/ I+na L l.m" (_1_)

V

Let ep = Hn

°= ljJl/ep

P = ~~1 (l+ep) (m-n+mn(l-C))

m-l l-ep
q = Cm 2 en vep Al (l+ep)

then, equation (22) becomes

The solution of equation (24) is

q 2-ep
ljJ - t

2+p-ep
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(22)

(23)

(24)
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or
I-no = (m-l)(2+n)Cnv~Al-n t

Cm 2 (1-n)+ (m-l) (2+n)(m-n+mn(1-C»
(26)

This is used to initiate the computations for the first two
time steps in order to avoid the singularity problem. For
the projectile initiated characteristics (i .e., at the pro­
jectile base) where only 0 becomes zero but not V, equation
(14) or (18) can be multiplied by 02/¢ and the resulting
equation can be integrated numerically as mentioned above
without any problem of singularity.

The following data is assumed for the XM140 (30mm)
weapon system in order to compute the characteristics of
velocity boundary layers:

Barrel Length = 42.0 inches
Chamber Length = 2.48 inches
Reference dynamic viscosity at 530 0 R = 0.00003 lbs/ft-sec

m = 7, n = 7

time step = 0.0001 seconds

Time Dens ity Projectile Velocity Temperature, oR1b flft 3 (ft/sec)
.-

0.00000 6.5 0 5200
0.00040 8.2 - -

0.00085 5.0 1600 4200

0.00130 3.0 2050 3550

0.00170 2.3 2200 3200

0.00215 1.8 2230 -
0.00240 - 2240 2800

!

The characteristics are shown in Figure 2. The initial
positions of the characteristics are chosen so that the region
of interest is covered. Since the velocity characteristics
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have a steeper slope as shown in Figure 2, it is necessary to

use characteristics originating both in the original pro­
pellant chamber and also at the projectile base during the
motion.

The velocity boundary layer thickness, 0, is shown in
Figure 3. The boundary layer grows not only with time but
also with increase in x except near the base of the projectile.
The growth is steeper at the projectile base than near the

breech end. This analysis predicts the growth and also the
decay continuously without any separate treatment. The
boundary layers are much thicker than predicted by Nordheim,
Soodak, and Nordheim[7]. It is straightforward to compute
any other parameter of the boundary layer from this velocity
boundary layer thickness parameter.

The dimensionless skin friction coefficient is shown in
Figure 4. This is maximum near the breech end and decreases
in the flow direction. The skin friction coefficient de­
creases also with increase in time. This also implies that

the unsteady flows are more susceptible to viscous effects
than steady flows. Of course, the shear stress at the wall
can be computed by the use of skin friction coefficient and

equation (9).

The distribution of shear stresses at the wall in PSI
units are shown in Figure 5. The trend is somewhat opposite
to that of the skin friction coefficient, i.e., the shear
stresses are maximum near the projectile base. The shear

stresses first increase and then decrease with increase in
time. The shear stress at the wall will be maximum at the
muzzle end of the gun barrel. Therefore, the gas dynamic
erosion will be more severe at the muzzle end than near the
origin of rifling. Even though the shear stresses are of
the order of 100 psi and may not create significant erosion
on high strength material such as steel, these shear stresses
can easily wipe-off any incipient melting of the bore surface

material.
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NONLINEAR PROBLEMS IN THE INTERACTION OF
A STEEL CARTRIDGE CASE AND THE CHAMBER

J. J. Toal and S. C. Chu

Research Directorate
GEN Thomas J. Rodman Laboratory

Rock Island Arsenal
Rock Island, Illinois 61201

ABSTRACT

In a recent development of a steel cartridge case, high extraction
forces were encountered that were caused by the sticking of the case to
the chamber. This sticking condition arose because a steel cartridge case
has less recovery than a brass case. This reduced recovery can be attri­
buted to the modulus of elasticity of steel that is much higher than the
modulus of elasticity of brass. A relatively simple nonlinear elasto­
plastic analysis has been developed to parametrically analyze the cartridge
case/chamber interaction under actual firing conditions when the cartridge
case is loaded near the maximum material-carrying capacity. In contrast
to the usual assumption that the chamber is rigid, the chamber is con­
sidered to be deformable in this investigation. The interaction of the
steel cartridge and the chamber is studied parametrically. With the use
of the analysis proposed in this paper, a set of design parameters can be
found to ensure uniform and acceptable performance of a steel cartridge case.

INTRODUCTION

Cartridge cases for small-arms ammunition have been traditionally
designed for brass. However, because of the limited natural supply of
brass and its predominant use in small arms ammunition, a strategic signi­
ficance has been attached to it. With the increasing emphasis of fire­
power and inadequate domestic supply, the usage of brass during a major war
could become critical. Hence, the use of alternate materials for cartridge
cases of small-arms ammunition is very important. Aluminum and steel are
considered to be more economical materials than brass for this application.
The major difficulties in the development of aluminum cartridge cases are
those of the so-called IIburn-through ll problems. Existing literature in­
dicates that the sidewall of an aluminum cartridge case that split during
firing caused serious erosion of the case head and the chamber of a gun.
Serious erosion damage in the M16 Rifle chamber due to aluminum case splits
has been observed [Ref lJ. Hence, from the economical point of view, the
development of steel-cased cartridges is of great importance at the present
time. In the recent development of steel cartridge cases, the problem has
arisen in which the cartridge case becomes stuck in the chamber, resulting
in high extraction loads. The main cause of the II sticking ll problem is
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that a steel cartridge case has less recovery than a brass case since
the modulus of elasticity of steel is much higher than the modulus of
elasticity of brass.

The objective of this investigation was to develop a relatively
simple nonlinear elastoplastic method for analyzing and designing a
steel-cased cartridge to remedy the sticking problem. The interaction
of a steel-cased cartridge and the chamber of a gun will be studied
parametrically. A set of design parameters such as cartridge case ma­
terial properties, chamber pressure, cartridge configuration, the
initial clearance between a case and a chamber, and the configuration
of the chamber of a gun, will be established to ensure uniform and
acceptable performance of a steel-cased cartridge. In contrast to the
usual assumption that the chamber is rigid, the chamber is considered
to be deformable in this investigation.

THEORY

An inelastic theory for a cartridge case is developed on the basis
of the following assumptions:

a. The material is homogeneous and isotropic.
b. The inelastic deformation is time-independent.
c. Hencky's stress-strain relation is valid.
d. The material is assumed to be compressible.
e. Von Mises' yield criterion is valid.

The use of cylindrical coordinates (r,e,z) is convenient where z is
coincident with the longitudinal axis of the case. For any point in a
cartridge, the nonvanishing stress components are Or, 0e, and Oz while
the nonvanishing strain components are Er, Ee, and EZ'

Elastoplastic Solution of Case-Chamber Problem

A longitudinal cross section of a cartridge case is shown in Figure 1.
The cartridge case is divided into Nrings with zo=t, Zl' z2,···zn=L.
Let Fo be the bullet-pulling force. The load acting on the base of a
bullet is given by

F = 'IT r ~ Pg

where Pg is propellant gas pressure.

The stress components acting on a ring with radius rare

Pr
0---
e - tCos8

(1 )

(2)

Or =....i. as =2r
P

2Cos13
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Pr
crz = =2t':"'"':C"""o-s""'"13

= p(d-d)
2rtCos13

if F > Fo

(4)

(5)

Note that P = P9-PI where PI is the interface pressure between a
cartridge case and tne chamber.

Cartridge Case Loaded Into Inelastic Region:

In the development of an elastoplastic solution, a loading function
must be specified in which the plastic deformation and the subsequential
yield condition are defined. For linear strain-hardening materials, the
loading fucntion of Hill [Ref 2J can be written:

a = (l-a)cryc + ~Ec£ (6)

where aEc is the slope of the straight line in the plastic region and a
may be considered as a strain-hardening factor for the material, ayc
is the yield stress of the cartridge case material in tension, cr and
Eare effective stress and effective strain, respectively, which are
defined as

(7)

and

(8 )

since E= £e + EP, equation (6) can be reduced to the relation [Ref 3J

or

- aE -pa = ayc + _c £
1-0

With the use of Hencky's stress-strain relation [Ref 4J,

£~j =~ Sij EP
a
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where Sij is a deviatoric stress tensor. Hence,

Substituting eq. (10) into eq. (12) yields

(13)

With the use of the strain-deflection relation

(14 )

where Uc is the radial displacement of the cartridge case at radius
r, Ee is the circumferential strain which is the sum of the elastic
part and the inelastic part, i.e.,

Hence, equation (14) can be written
e p

Uc = r( Ee + Ee)

(15 )

(16 )

From the theory of elasticity, one obtains the following equation

(17)

Substituting eqs. (13) and (17) into eq. (16), then

Let e be the initial clearance between cartridge case and chamber.
Then the displacement of the chamber at the inner surface, ub, can
be written

Ub = Uc - e

(18 )

(19 )

If the chamber is assumed to be a thick-walled cylinder subjected to
internal pressure PI, then one has [Ref 5J

_ PIa. b2+a.2

ub = Uc - e - ~ [b 2 -a. 2 + vbJ (20)
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Hence,

PI = 0

Note that:

Pg = P + PI

Pg = P

if Uc > e

'f <1 Uc - e

if Uc > e

if Uc $ e

(21)

(22)

(23)

(24)

Cartridge Case Loaded In Elastic Region:

If the cartridge case is loaded in the elastic region, i.e.,
a< ayc, then the following stress-strain and strain-displacement relations
will be used

_ 1
£r - r [ar - Vc (ae + az)]

and

1£e = -- Cae - Vc (ar + az)]
Ec

Uc = r£e =~ [ae - Vc (ar + az)]
c

(25)

(26)

During the unloading process, the behavior of the cartridge case
and the chamber is considered to be elastic. The dimensions used are
the dimensions of the case and chamber computed at the peak pressure.
A negative pressure is applied to the case during the unloading process.
The result of unloading is then superposed on the result at the peak
pressure and, hence, the interference pressure and the extraction force
can be determined.
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COMPUTATIONAL METHOD

Loading

Since a large displacement of the cartridge case may be involved
in the present case-chamber interface problem, the true displacement of
the cartridge case at the peak pressure, Pmax , would not be known at
the beginning of the loading process. Hence, an incremental loading
procedure will be utilized to obtain solutions in this investigation.

For each increment of pressure, the calculation procedure can be
stated as follows:

Step 1

Step 2

Step 3

Specify an increment of pressure ~Pi acting on the case, then:

Pi = Pi-l + ~Pi

Calculate 0e, or' and 0z by using eqs. (2), (3), and (4) or (5).

Calculate effective stress, 0, by using eq. (7). Note that
-if ° < Oyc, case loaded in elastic region

case loaded into inelastic region

Step 4

Step 5

Step 6

Step 7

If 0 < ayc' calculate circumferential strain

£:e =t- [oe -vdor + O'z)]
c

If a ~ 0yc, calculate effective plastic strain

-p = l-a (0 - ° )
£ aEc yc

Calculate plastic component of circumferential strain

-p
£:~ =~: [20e - or - 0z]

0'

Compute radial displacement of the case
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Step 8 Compute bore displacement of the chamber

ub = Uc - e if Uc > e

= 0 if Uc < e
where e is the initial clearance between case and chamber

Step 9 Compute interface pressure

P _ (uc-e)Eb
I - b 2+a 2

a[b2 2 + Vb]-a

Step 10 Compute propellant gas pressure

Pg = Pi + PI

If Pg < Pmax ' let r = ro + uc' then refer back to Step 1.
All computations to continue.

Step 11 If Pg = Pmax ' then let
-
PI = PI
-Uc = Uc
-ub = ub

-
rmax = ro + Uc

Hence, PI, uC, Ub, and rma are interface pressure between the
case and the chamber, dispYacement of the case, displacement of
the chamber at bore, and radius of the case at the peak pressure,
respectively.
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Unloading

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Specify -~Pi, then calculate Pi by

Pi = Pi-l - ~Pi

Compute

£e =_1 [oe - vc(or + oz)]
Ec

Compute case radial displacement

Compute interface pressure

Uc Eb
PI = -b--:2....+-a.-:::'"2--­

a.[b2-a2 + vb]

Applying the superposition principle, the interface pressure
between case and chamber and the case and chamber displacements
at unloading can be computed by the relations of

= -p = PI + PI

= a
= -Uc = Uc + Uc

-ub = ub + ub

= a

if IUcl < ub

if IUcl > ub

where P is the interface pressure during unloading
-u is the case displacement during unloading

and Ub is the bore displacement of chamber during unloading
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Step 7

Step 8

compute

Pg = Pi + PI

if Pg + Pmax >0, then let r = rmax + uc' refer back to Step 1.
All computations to continue.

If Pg + Pg ~ 0, then compute extraction force. Note that when
the unloading process is completed, the interface pressure is
automatically computed at Step 6 which is used to compute ex­
traction force with assigned friction coefficient between the
case and the chamber.

ANALYSIS OF RESULTS

The steel cartridge case considered in this investigation is shown
in Figure 1. The outer diameter of the chamber is assumed to be one inch.
To obtain numerical solutions, the cartridge case is divided into 32 rings.
The thickness; the initial clearance between case and chamber; material
properties such as yield strength, modulus of elasticity, strain-hardening
factors, etc., for each ring; and the peak pressure are considered to be
independent design parameters. The effects of those parameters on the
extraction forces are analyzed. A steel cartridge case is considered in
this investigation, and since the modulus of elasticity of steel does not
vary much, it will be considered as a constant, E = 30xl0 6 psi, for each
ring.

Effect of the Peak Pressure

The magnitude of the peak pressure is a very important factor in
causing the sticking problem of the steel cartridge case. The effect of
the peak pressure on the resulting extraction force is shown in Figure 2.
In this figure, note that the incidence of cases that stick to the chamber
can be significantly reduced or eliminated if the peak pressure can be
reduced to a certain level. A reduction of peak pressure (all other factors
held constant) will reduce the round impulse and velocity. One method of
maintaining the round impulse and the velocity while the peak pressure is
being reduced is to cause the Pressure-Time (P-T) curve to become flatter.

Effect of Yield Strength of Case Material

The material properties such as yield strength of a steel-cased
cartridge also playa very important role in the sticking problem. The
effect of yield strength of a case material on the extraction force is
shown in Figure 3. The extraction force can be reduced if a case is made
of a higher strength material, as indicated in Figure 3. However, the in­
creasing of the strength of material is limited by other material properties
such as hardness and elongation. If the hardness of a cartridge case is
increased, then the ductility of material will be reduced and hence the
incidence of a split case will be increased.
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Effect of Initial Clearance Between Cartridge Case and Chamber

The relation of clearance between cartridge case and chamber, and
the extraction force is shown graphically in Figure 4. Note that the
increasing of an initial clearance will reduce the force required to
extract a case that is sticking to the chamber. However, this increas­
ing of the initial clearance may increase the incidence of malfunctions
in feeding.

CONCLUSIONS

A simple nonlinear solution technique has been presented for
solving problems in the interaction of a steel cartridge case and a
chamber. Both nonlinear material response and geometric nonlinearity
have been taken into consideration in this investigation. Material
nonlinearity has been taken into account by use of the theory of plas­
ticity and Hencky's constitutive equations. An incremental loading
procedure has been used in consideration of large deformation of a
cartridge case.

Guidance for the selection of design variables such as yield
strength of cartridge case material, peak chamber pressure, and initial
clearance between cartridge case and chamber is presented graphically
in this paper.
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Abstract. It is shown that "stencils" exist for the sixth

order solution of Poisson's equation by use of a nine-point

difference approximation. This enables one to get more

accurate approximations for the solution with less labor.
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NINE-POINT DIFFERENCE SOLUTIONS FOR POISSON'S EQUATION

J. Barkley Rosser

Introduction. Suppose we wish to approximate the solution of

2V u(x, y) :; f(x, y)

inside some region, given values around the boundary. A standard

approach is to introduce a "stencil", say

0 1 0

1 -4 1

0 1 0

u(x, y) .

The significance of this is that if a coefficient in the stencil is m units

above the hori:wntal center line and n units to the right of the vertical

center line (m and/or n may be negative), one forms the product

of the coefficient with u(x t nh, y +mk): the entire stencil denotes the

sum of these products. Thus the stencil shown above denotes

u(x + h, y) t u(x - h, Y) + u(x, Y t k) t u(x, y - k) - 4u(x, y) •

To approximate the u(x, y) which solves (1.1) It 1s traditional

to choose k:;;; h. Also, to save spa.ce, we write

-

Sponsored by the United Stqtes /lImy under Contract No. DA-31-124-ARO-D-462.
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(1.2)

0 1 0

1 -4 1

0 1 0

u(x, y) .

This is called the five-point stenci!.

If u(x, y) is reasonably smooth, we have

(1. 3)

4
to order h . So, if h

(1. 4)

2 2
.:lSu(x, y) ~ h V u(x, y)

is reasonably small,

2
.:lS u(x, y) £: h f(x, y)

is a good approximation to (1. 1).

and define

Let us choose a suitable (x y)
0' 0

(1. 5) u = u(xO + mh, Yo + nh) •m, n

Then to approximation h
4

, we conclude

(1. 6)
2

.:l_u ~ h f(x
O

+ mh, yO + nh) .
j m, n

The equations (1.6) are a set of linear equations, which have a unique

exact solution,
-
u . If we solve these linear equations, we will
. m, n

- -
get quantities u such that u differs from

m,n m,n

(assuming smooth boundary conditions).
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This is the basis for several schemes for computing numerical

approximations for u(x, y) at the "grid points 11 (xo + mh, YO + nh).

2
However, since the accuracy is only to order h, it is not possible

to get very high accuracy. Even moderate accuracy requires solving a

very large number of simultaneous equations.

If f(x, y) = 0, one can get higher order approximations by use of

a nine-point stencil, and so improve the situation. The nine-point

stencil is given by

(1. 7) A
9

u(x, y) =

In general, one has

1 4 1

4 -20 4

1 4 1

u(x, y) .

(1. 8)

only to order h
4

.

2 2
A

9
u(x, y) ~ 6h \l u(x, y)

So if one solves

(1. 9)
- 2

A u = 6h f(x
O

+ mh, YO + nh) ,9 m,n

one will still usually only get an approximation to order h
2

• However,

if one solve s

(1.10)
-

A u = 0 ,9 m,n
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one will get an approximation to order h
6

for the solution of

(l.ll)
2

V u(x, y) = 0 ,

PROVIDED one has smooth enough boundary conditions.

The object of the present paper is to present methods for solving

(1.1) by a nine-point stencil to order h
6

even when f(x, y) is not

identically zero. We should warn that these methods will fail unless

the boundary conditions and f(x, y) are smooth. In particular, f(x, y)

should have bounded derivatives up to order six for the methods of this

paper to succeed.

For completeness, we repeat certain material from Rosser [ 1].

2. A fourth order method. In Section 1, we contemplated dividing

our region into squares. For some types of regions, it would be

convenient to divide the region into rectangles. It is widely believed

that difference methods cannot be constructed to give approximations of

order greater than two unless the region is divided into squares. This

is not so. We will explain a method that gives approximations of order

four if rectangles of sides hand k are used.

Let us temporarily set

(2. 1) u = u(xo + mh, Yo + nk) .
m,n

That is, we use rectangles whose corners are the grid points

(xo + mh, Yo + nk).
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Define

(2. 2) A::: 1Zh
2

k
Z

h
2

t k
2

(2. 3) b :::
10k2 _ 2h2

h
2

t k
2

(2.4)
10hZ _ 2k Z

c :::
h

2
t k

2

We have

(2. 5)
2 2

(b t 2)h ::: A ::: (c t 2)k ,

(2.6) btc:::8.

Define a modified nine-point stencil

(2.7) A;u(x, y) :::

1 c 1

b -20 b

1 c 1

u(X, y) ;

here motion of one unit in the y-direction in the stencil is supposed

to induce a change of k in y, as in our original definition.

If u(x, y) is smooth, we have to order h
6

t k
6

(2.8)
:{< 2 . h

2
A 2 2

A
9

U(X, y) ~ AV u(x, y) t -2 u (x, y) t h k u (x, y)
1 xxxx xxyy

kZA
t - u (x y)12 yyyy ,
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By (1. 1) we have

u (x, y) + u (x, y) = £ (x, y)
xxxx xxyy xx

£ (x, y)yy

If we multiply the first Q£ these by h
2
A/lZ and the second by k

2
A/lZ

and add, we see by (Z.Z) that we can write (Z.8) as

(Z.9)
~. hZA kZA

.6l
9
·"u(x, y) ~ Af(x, y) + -Z f (x, y) + -Z f (x, y)

1 xx 1 yy

Observe that

Z
h f (x, y) ~ £(x + h, y) + £(x - h, y) - Zf(x, y)

xx

Z
k f (x, y) ~ £(x, y + k) + f(x, y - k) -Zf(x, y) .

yy

Thus we conclude finally that to order h
6

+ k
6

(2.10)

0 1 0

1 8 1

0 1 0

f(x, y) .

So, if we solve

319



(2.11)
*-

Ll u =
9 m, n

0 1 0

1 8 1

0 1 0

f(x
O

+mh,yo +nk),

we will get u
m,n

that differ from u by the order h
4 + k

4
.

m,n

This gives a method of order four for rectangular grid elements.

3. A sixth order method. If there is a sixth order method that

permits the use of rectangular grid elements, we have no knowledge of

it. So we return to square grid elements, adopting again the notations

of Section 1.

If (1.1) holds and u(x, y) is smooth enough, then to order h
8

(3. 1)
2 h

4
2 h

6
4 h

6
~9 u(x, y) 2" 6h f(x, y) + 2" V f(x, y) + 60 v f(x, y) + 30 fXXYy(X, y)

This does not agree exactly with equation (20.57) on p. 194 of

Forsythe and Wasow [2]. However, they claim that their (20.57) is copied

from another reference, but they made a mistake in copying. Our (3.1)

agrees with the formula from which (20.57) was supposed to be copied.

We note that
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2 2 h
4

4
f(x, y) ~ 3h V f(x, y) +4"" :; f(x, y)

1 1 1

1 -8 1

1 1 1
h

4

+ -2 f (x, y)xxyy

to order h
6

, if f(x, y) is sufficiently smooth. So we may replace

(3. 2)

(3.1) by

(3.3)

1 1 1

1 82 1

1 1 1

3h
4

. 2
f(x, y) + 10 v f(x, y)

This formula appears in Collatz [ 3] as one of the stencils in

Table VI on p. 543.

There are occasional circumstances in which this would be quite

adequate; for instance if f(x, y) is a harmonic function. However, in

general we must do better.

For computational purposes, when we replace the u by u
m,n m,n

and attempt to solve, it does not matter what is on the right side of our

equations, as long as we maintain the same form on the left side. So

there is no reason why we must restrict the right side of (3. 3) to a

nine-point stencil.
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As we will have a solution to order h 6, we need not take h

particularly small. Useful results have been obtained with h = L/6,

where L is a basic dimension of the entire figure. With h = L/IO

accurate results should result, and with h = L/20 quite high accuracy

should result. For a square region, this requires at most 441 grid po.ints,

including the boundary. It would not overload the memory to compute

f(x, y) in advance at every grid point, store these values, and call such

as are needed for each application of (3. 3) or its replacement. In fact,

it would be an efficient scheme of computation. So we use a larger

stencil on the right of (3. 3).

We note that

(3.4)
2 1

h f (x, y) ~ - -2 f(x + 2h, y)
xx 1

4 5
+ 3" f(x + h, y) - Z f(x, y)

4 1
+ 3" f(x - h, y) - 12 f(x - 2h, y)

to order h6 . By using this and the corresponding relation for f (x, y)yy

in (3. 3), we obtain
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(3. 5)

0 0 -3 0 0

0 8 56 8 0

-3 56 476 56 -3

0 8 56 8 0

0 0 -3 0 0

f(x, y) .

This will serve very satisfactorily except for points adj acent

to the boundary. For these, values of f(x, y) at points outside the region

would be required. If such are available, there would be no difficulty.

However, they might not be available.

There is of course the off-center difference· approximation

(3. 6)
2 5 5 1 7

h fxx(x, y) ~ "6 f(x - h, y) - "4 f(x, y) - "3 f(x + h, y) + "6 f(x + 2h, y)

1 1- "2 f(x + 3h, y) +12 f(x + 4h, y) ,

correct to order h
6

. Using it, and the corresponding relation for y,

we could derive
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~~
1:::. 9u(x, y) - 120

0 3 0 0 0 0

0 -18 0 0 0 0

0 42 0 0 0 0

8 -4 8 0 0 0

38 566 -4 42 -18 3

.
8 38 8 0 0 0

f(x, y) ,

which is valid to order h
8

; on the right of (3.7) the "origin" of the stencil

is the square which contains 566.

This certainly brings a method of order h
6

within reach. One

wonders if there could be a better stencil than that on the right of (3.7).

Perhaps there is not, but we will investigate what is available.

4. A general approach. In order to take care of grid points that

are one unit away from each of two edges, it follows by (3. 1) that we

require constants a such that
ffi,n

(4. 1)
s s
L L

m=-1 n=-l

h
2

2
a f(x + mh, y + nh) ~ 6f(x, y) + -2 V f(x, y)

m, n

h
4

4 h
4

+ 60 v f(x, y) + 30 fXXYY(x, y)

to within terms of order h
6

. It follows by (3.7) that such constants

324



exist for 8 = 4. We shall show that they do not exist for 8 < 4. For

8 = 4, there are many sets of a
m, n'

and we shall derive the general

form.

Because the right side of (4. 1) is invariant under interchange of

x and y, if a satisfy (4.1), then so would
m,n

*

*a
m, n'

where we take

a = a
m, n n, m

Then so would

** 1 *a = -(a + a ).
m, n 2 m, n m, n

80 we lose no generality in assuming

(4.2) a = a
m, n n, m

then

If f(x, y) is smooth enough to have a double Taylor series out

h6,to order

(4. 3)
8 8 5 r K
\' \' f( h h) \' hr \' rs Dr-sDsf( )U U a x + m ,y + n ~ U us! (r _ s)! x Y x, y

m=-l n=-l m,n r=O s=o

to within terms of order h
6

, where D and D are partial derivativesx y

with respect to x and y respectively, and

(4.4) K =rs

8 8

2.: L
m=-l n=-l

r-s s
m n a

m,n

Because of (4.2), we have

(4. 5) K = K
rs sr

Define

(4. 6)
8

A = ~ a
m m, n

n= -1
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By (4.4)

(4.7) K =rO

s
L

m= -1

By (4.3), if we are to satisfy (4.1), we must have

(4.8)

(4.9)

(4.10)

(4.11)

(4. 12)

(4. 13)

K
OO = 6

K
10 = 0

K
zO

= 1

K
30 = 0

K
40

2
S

KsO = 0 .

By (4.7), this is a set of six simultaneous linear equations for

the A • If 8 < 4, they have no solution. 80 we take 8 =: 4, for
m

which we observed earlier that there is a solution, and proceed. The

equations (4.8) through (4. 13) have the unique solution

A
_-!L

AO
_ 209

Al =:
_1

-1 20 ' 40
,

10 '

A
2
-~ A

3
3

A
4

-l.= =
20 ' 20 ' 40

Analogously, if we write

(4.14) B
m =

8

L:
n= -1

na ,
m,n

then to satisfy (4. 1) we must have

(4.15)
s
L:

m= -1

r-1
m B =K =0

m rl
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This set of 5 equations has the one fold multiplicity of solutions

We write also

(4. 16) C
m =

s
L

n=-1

2
n a

m,n

To satisfy (4.1) we must have

(4. 17)

(4.18)

(4.20)

S
\' 2
!...J m Cmm=-!

;;: K ;:: 0 •
52

This set of 4 equations has the two fold multiplicity of solutions

C_
1

_1.9...1C +lC c = 37_.2. C • .2. c
- 60 4 0 4 4' 1 - 30 2 0 2 4'

C - - II +c + 5C C· = II - 1 c·· - II c
2 - 15 0 4'· 3 - 60 4 0 4 4'

To satisfy (4.1) it is sufficient as well as necessary to satiQfy

equations (4.8) - (4.13), (4.15), and (4.17) • (4.20). This we have

accomplished, and with three parameters, B
O

' CO' and C
4

, at our

disposal.
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Given values of the A , B •
m m"

and Cm' we have yet to determine

the a By (4.2) and (4.6), we have
m,n

(4.21) a = A - a
m,O m m,-1

4

- ~
n=1

a
m,n

Except for m:::: 0, this expre ssesaO (and hence ao ) in term s
m, jm

of a with both ri-O and s i- O. Using (4.2) with (4.21) gives
r, s

(4.22) aO 0,
444

:::: A - {A - a-'\' a } - '\' {A - a - \' a }o -1 -1 -1' !...J -1 r !...J n n -1 !...J n, r
, r=1 'n=1 'r=1

So also aO 0, is expressed in terms of a
r, s

with both ri-O and s i- O.

(4.23)

(4.24)

If we add and subtract (4.14) and (4.16) we will get

4
a = 1 {C - B - ~ n(n - l)a }
-I,m 2 m m n=2 m,n

4
a ::::·1 {c + B - ~ n(n + l)a }.

I,m 2 m m n=2 m,n

Except for m:::: - 1, 0, and 1, (4.23) expresses a
-1, m

(and hence a ) in terms of a with r ~ 2 and s ~ 2. If we
m,-1 r,s

take m = -1 in (4.23), and make another use of (4.23), we get

4

t ~
n=2

4

n(n - 1)[ C - B - ~ r(r - l)a J}
n n r:::: 2 n, r

If we take m:::: 1 in (4.23), and make a use of (4.24), we get

(4.26) a-II, :::: 1 {c - B
2 1 1

4 4
1 ~ n(n - 1)[ C + B - ~ r(r + l)a J}
2 n = 2 n n r::: 2 n, r
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a (and hence a 1) in terms-I,m m,-

Using these in (4.21) gives also

So, except for m = 0, we have

of a with r.2. 2 and s.2. 2.
r, s

a ° in terms of a with r.2.2 and s>2.
-1, r,s

Except for m = ° and 1, (4.24) or (4.26) expresses a in
1, m

terms of a with r> 2, and s.2. 2. If we take m::: 1 in (4.24),
r,s -

and make another use of (4. 24), we get

(4.27)
4

t ~
n=2

4
n(n + 1)[ C + B - ~ r(r + l)a ]}

n n r= 2 n, r

If we use this, (4.26), and (4.24) in (4.21) we get also a
1,0

in terms

of a with r > 2 and s > 2.
r, s

In view of (4.2), there are only six distinct parameters a
r, s

with r > 2 and s.2. 2. There remain yet unused three of the eighteen

original equations. It would be expected that they would give three

more conditions among the a , but surprisingly they turn out to be
r, s

dependent on the other fifteen. This is due to the particular relations

that subsist among the A , B ,
m m and C ,

m
and would not be the case

with general A , B, and C .
m m m

Thus consider (4.23) for m = 0, of which we have not yet made

any use. If we substitute from (4.23) into (4.21), we will get

(4.28) a :::A_1_1{C
-1,0 2-1 B

-1

4 4
~ n(n - l)a 1 + ~ (C - B )

n= 2 - ,n n= 1 n n

4 4

- ~ ~
n =: 1 r= 2

r(r - l)a }., n, r
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Making use of a ;;; a lets us write the final term asn, r r, n

4 4
L n(n - 1) L a

n=2 r=l n,f

By(4.1S) and (4.17), we have

4

C_
1

- 8
1

+ ~ (Cn - Bn) = 1 - (Co - 80) •
n=l

Also, from the given values of the A, we have
m

4
A ;;; 1 {l - L: n(n - l)A } .

-1 2 n:::2 n

Putting these into (4. 28) gives

4 4
a ;; 1 {C - B - L n( n - 1)[ A - a - La)}.
-1,0 2 0 0 n;;2 n -1,n r:iq n,f

Use of (4.;n) conv~rt~ this into (4.23) with m;;; O.

Consider next (4. 24) for m'" 0, of which we have not yet made

any U$e. If we substitute from (4.24) into (4.21), we will get

As b~fore, we write the last tElrm as

r(r t l)a }.n, r

4- 4

L: n(n t 1) I;
n" 2 r= 1
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and we have

4

C_
1

+B_
1

+ L: (C
n

+B
n
)=l-(Co +B

O
)'

n=l

and

4
A = 1 {l - L: n(n + l)A } •

1 2 n=2 n

Substituting these into (4.29), and using (4.21), gives (4.24) with

"m ::; O.

Consider finally (4.24) with m = -1. Refer back to (4.26).

We have

4
1 \'
4 Li

n=2

4

n(n - 1) L r(r + l)a
f::; 2 n, r

4 4
=~ L n(n + 1) L r(r - l)a .

n=2 r=2 n,f

Also, use of (4.15) and (4.18) gives

4
l{C -B _1 )' n(n-I)(C tB)}
2 1 1 2 nt.;2 n n

4
= } {C_

1
t B_

1
-} ~ n(n t I)(Cn - Bn)} .

n=2

Substituting these into (4.26) and using (4.23) gives (4.24) with m = -1.

Thus we can choose a with r.?: 2 and s.?: 2 at will, subject
r, S

to a = a Then we can substitute gradually back, and recover all
f,S S,f
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the a Recalling that we have also the free parameters 8
0

, CO'
r, s

and C
4

, we see that there is a ni.ne fold multiplicity of solutions.

for all n,One would have thought it possible to choose a :: 0
4,n

thus reducing to the case S:: 3. However, as A
4

- 1/40, this is

precluded by (4. 6).

We observe that if the principal grid point is at a distance h from

the left edge, but further than that from the top or bottom, then one can

use the off center difference approximation in the x-direction only. We

use the methods given above to see if one can get a stencil which does

•not extend as far as six grid points in the x-direction. It turns out

that one cannot, but we will present the analysis anyhow, since it shows

how to generate all possible stencils.

Without causing confusion, we can use the same letters as before,

but with slightly altered denotations.

So for our a we will now have -2.:s n .:s 2, -l.:s m .:s S. In
m,n

place of (4.2), we will have

(4. 30) a :: a
m, n m,-n

All summations on n should be from -2 to +2. Specifically, this

change should be made in (4.3), (4.4), (4.6), (4.14), and (4.16). Delete (4.5).

As before, we see that we must have S.2: 4. Taking S:: 4, we

get the same values of A as before.
m

By (4. 30) and (4.14), we have B :: 0 for all m.
m

Thus (4.15)

is trivially satisfied.
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We get the same determination as before for the

Finally, we write

c .
m

(4. 31)

We must have

D =
m

2

~
n=-2

4
n d

m,n

(4. 32)

(4.33) o .

Given the A , B , C , and D , there is no question how to
m m m m

determine the a .We have immediately
m,n

D - C
m m

a = a =m, -2 m, 2 24

4C - D
m ma = a =

m, -1 m, 1 6

a = A - 2a
m,O m m,1

Thus we can easily determine sets of

2a 2'm,

a m, n
There are 18 distinct

a . As they do not depend on the B , it appears that we ha ve a six
m,n m

fold multiplicity of solutions. It is surprising that this does not permit

the choice a 4 0 = a = a 4 2' which would let us reduce S to 3.
, 4, 1 ,

5. Regions of unusual shape. We have been using squares for our

grid. There are cases where this is really impractical. For example,

suppose our region is a rectangle of sides 1 and -.[2. For rectangles of

intructablc proportions, a way of handling the matter easily is provided in

Hosser [ 1 ]. Beyond that, we have not pushed our investigations.
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ILLUMINATING ROUND EFFECTIVENESS MODELING

Martin Messinger
and

Leonard Oleniczak

Picatinny Arsenal
Ammunition Development and Engineering Directorate

Dover, New Jersey

Abstract

This paper is concerned with the problem of evaluating the
effectiveness of existing and conceptual illuminating rounds. The
illuminating round effectiveness model developed at Picatinny Arsenal
essentially consists of three parts: a ballistic portion which is
concerned with round deployment and descent, an illumination/atmospheric
portion which calculates target/background visual contrasts at all
points in search area during the entire flare burn time, and a human
visual perception portion which determines from the target/background
contrast the glance target detection and/or recognition probabilities.
Effectiveness measures are evaluated by integrating suitable functions
of the glance target detection/recognition probabilities over the search
area and flare burn time.

In particular, this paper will concentrate on developing the
illuminating round effectiveness measures built into the model.
Basically, two different measures of effectiveness are employed. The
first measure, referred to as the time integral of the area illuminated
(TIAI), has the dimensions of area-time and is meaningful when it is
desired to evaluate the ability of an illuminating round to maintain
illumination over a given search area. The second measure of effectiveness,
referred to as effective area (EA), has the dimension of area and is, in
spirit,analogous to the lethal area concept employed extensively in
evaluating the effectiveness of HE munitions. This effectiveness measure
is particularly useful when it is desired to evaluate the ability of an
illuminating round to enable detection or recognition of unknown targets
in a sepcified search area.

An application of the model to an hypothetical incremental flare
illuminating round is included to illustrate concepts developed.

Survey of Illumination/Atmospheric and Visual Perception Sub-r1odels

The scenario employed in the model is illustrated in Fig. 1.
Though the figure depicts,as an example,a ground launched round, the
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model can just as readily consider air dropped flares. The model
assumes a flat rectangular search area which is to be illuminated
by the round. Inputs to the model include parameters to describe
the characteristics of the flare, parameters to define the scenario,
parameters to specify target/background characteristics, and
parameters to characterize the atmosphere. Table I gives a detailed
list of the inputs necessary to drive the model.

TABLE 1

INPUTS TO THE MODEL

Flare Parameters:

Candle Intensity Vs Time
Burn Rate Vs Time
Pyrotechnic Weight
Non-Combustible Weight
Initial Stabilized Flare Descent Rate

Scenario Parameters:

Search Area Dimensions and Location
Location of Observers
Number of Observers
Observer Scan Rate
Initial Flare Position

Target/Background Parameters:

Target Size
Target Reflectivity
Background Reflectivity

Atmospheric Parameters:

Normalized Volume Scattering Function
Meterological Range (Visibility)
Wind

As shown in Figure 2, targets in search area are modeled as
having two reflecting surfaces; a horizontal surface parallel to
the ground plane and a vertical surface oriented such that its
normal is pointed in the direction of the projection of the observer's
location into the ground plane. Target/background contrasts and
detection/recognition probabilities are calculated independently for
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each surface.

The illumination geometry is portrayed in Figure 3. Light
reaching the observer comes from three sources: light reflected
from the target surface as the result of direct illumination by
the flare, light from the flare scattered into the visual path
between the target and the observer which gives rise to path
luminance, and glare which essentially represents direct light
from the flare reaching the observers eye. The apparent target/
background contrast is defined as:

BT - DB I
c (1)

where C = apparent target/background contrast as
seen by the observers.

BT = apparent target brightness as seen by the
observers (footlamberls) .

BB = apparent background brightness as seen by
the observers (footlamberts ).

In calculating the apparent brightness of the target snd background
it is, of course, necessary to account for the light attenuation
that results from atmospheric scattering (light absorption in the
visible spectrum is insignificant and is neglected). It is also
important to note that the model accounts for only single scattering
and neglects indirect illumination and other effects due to multiply
scattered light.

From the apparent target/background contrast one computes the
target detection probability. This computation is ~erformed with the
aid of the extensive work performed by Blackwell. l , Using Blackwell's
results, the detectability at time t of a target located at (x, y) in
the search area (i.e., the conditional target detection probability
given the nresence of a target and a observer looking at the location)
is given by:

1

Ie (x,y,t)/c L (x,y)-1]/.39

~e-u2/2 du (2)

-00

where C (x, y, t) = the actual apparent target/background contrast at
time t for a target located at (x, y).
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= the liminal target/background contrast,
(i.e., contrast required for 50% target
detection probability) for a target located
at (x, y).

In general, the liminal target/background contrast is a function
of the visual angle subtended by the target to the source, the back­
ground brightness which determines the visual adaptation level, and
the time duration that the location is examined. Fig. 4 gives the
liminal target/background contrast used in the study. It is based
on a 1/3 second observer glance duration.

The probability of target recognition given detection, Pr ,
depends upon the additional ability of the observer to resolve indi­
vidual portions of the target so that its shape can be ascertained.
For target detection, all that is required is for the observer to be
able to identify an anomaly in the terrain features. The expression
used for the conditional probability ~f recognition given target
detection is taken from the MARSAM II study: .

{

(N(x,y,t)-3.2)2
l-exp N :;; 3 . 2

Pr(x,y,t) = 11 (3)

() N<3.2

where N (x,y,t) denotes the number of resolvable elements across
the target surface. N(x,y,t) depends upon the angle subtended by the
target to the observer and visual adaptation level. The product
p(x,y,t)'Pr (x,y,t) gives the unconditional glance probability of
target recognition.

Target detection and/or recognition glance probabilities are
computed independently for both the horizontal and vertical target
surfaces. Depending upon the intended application, either the horizontal
surface detection Or recognition, vertical surface detection or recog­
nition or maximum detection or maximum recognition probabilities can be
used in computing the illuminating round effectiveness measures. For
simplicity, in the derivations that follow we will use one of the glance
target detection probabilities, p(x,y,t).

Measures of Effectiveness

The first effectiveness measure to be considered is the time
integral of the area illuminated, TIAI. At a given time, t, during
the flare burn, one can weight each differential area, dA, in the search
region by the target detectability, p(x,y,t), and integrate over the
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entire search area to obtain the area illuminated at time t, AL(t).

AL( t) = f p(x,y,t)dA

Search
Area

(11 )

(6)

The significance of Eq. 4 becomes apparent if one enV1Slons the
search area to be populated with targets of uniform area density p
targets/m2 . Thus p p(x,y,t)dA is the expected number of detectable
targets in dA and hence, the expected number of detectable targets
in the search area at time t is given by p AL(t).

Integrating Eq. 4 over the burn time of the flare gives rise

to the time integ::1o: thje{ i1Ijna:~::y,t)dA } dt (5)

Burn Search
Time Area

The maximum possible value for TIAI is the product of the search
area and the flare burn time. Normalizing by this quantity yields
an effectiveness measure whose value lies between 0 and 1 and repre­
sents the average,over search area and flare burn time, of the target
detectability. This figure of merit is most useful in evaluating
the ability of a round to maintain adequate illumination during the
burn over the entire search area.

Average detectability =TIAI
AT

In order to develop the notion of the Effective Area, EA, of an
illuminating round in a given scenario, the concept of the observer
scan rate must be introduced. The scan rate denoted by a , is simply
the area scanned by each observer per unit time. We assume that the
scanning procedure is random and that the observers are independent.
Hence in differential time, 6t, the probability that a given point
(x,y) in the target area is examined is given by:

Prob. (glimpse at (x,y) in ~t) =nait
(x,y) not previously detected
given by:

The probability of detecting a target at
in the time interval t to t + ~t is thus

Prob [Target at (X,y)! Not detected]
detected between up to time t
t,t+~t

( ) na6t=P x,y,t A
(8 )
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Let K(x,y,t) denote the probability of detecting a target located
at coordinates (x,y) in the time interval 0 to t, and let K (x,y,t)
= 1 -K(x,y,t) denote the probability of not detecting the target
by time t. We then obtain the following difference equation for K (x,y,t):

K(x,y t+6t) =K(x,y,t) [ I-P (x,y,t)~
A

This difference equation results from the fact that for a target not
to be detected by t + ~t, it must not be detected up to t ~d not
detected in the interval t to t + ~t. Taking the limit as 'At ~ 0,
one obtains the differential equation;

d _
-- K(x,y,t) = -P (x,y,t) ~ K(x,y,t) (10)
dt A
The solution to this equation subject to the initial
at t = 0, K(x,y,t) = 1 is given by:

_~ j(P~X,y,~)dn
i((x,y,t) = e A 0

condition that

(11 )

Hence the probability of detecting a target located at coordinates
(x,y) over the total flare burn time T is given by

- ~ rp~X,y,t)dt
A Jno (12)K(x,y,T) = 1 - e

Finally, the probability of detecting a target in dA over the flare
burn is given by the product of the probability that there is a
target in dA and the conditional detection probability given the
target is in dA.

K(x,y,T) pdA

The expected number of targets detected is thus given by

Expected number of targets detected

= pIr l-e
A

na I T
--- P(x,y,t)dt

A 0 ] dA
(14)

The actual number of target detection would be Poisson with the
above expectation.
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dA

As an effectiveness measure one can thus take the exnression

EA = f [l_e-na/A~ ~(X,y,t)dt]
A

(16)=

The above quantity referred to as the Effective Area, has the dimension
of area. Its value is between 0 and the size of the area being
illuminated. One can define a flare efficiency by considering the
ratio of EA to either the total search area or the expected area
scanned by the observers during the search. The first normalization
yields: T

( [l_e-na / A jP(X,y,t)dt 1dAEA}A 0

A A
For a uniform target area density, this quantity can be inter­

preted as the ratio of the expected number of targets present in
the search area.

An alternate interpretation is possible for the case where it is
desired to find a single target located in the search are~. The
conditional probability that the target is detected given that it is
located at (x,y) is given from Eq. 12 as:

{

Prob. of detecting}

target at (x,y)
1 -

na ( T
- ---JnP(X,y,n)d n
e A 0

assuming all locations
Hence integrating over
represents the probability
in the search area.

The probability that the target is in dA is,
are equally likely, clearly given by dA/A.
the search area demonstrates that EA/A also
of finding a single target located randomly

A potential difficulty with Eq. 16 is that it represents the
combined capabilities of the observers as well as the flare. From
Eq. 15, one can obtain the expected total area scanned by all the
observers by setting p(x,y,t) equal to 1

Expected Area Scanned
naT

A[l-e """"A"J (18)

If the expected total scanned area is small, EA/A will be small no
matter how good the actual flare performance. To account for the

341



possihle limitation of the observers to scan the entire search area,
one can evaluate, for the single target case, the conditional
probability that the target is detected given that it is scanned.
This probability is given by:

P (target detected/target scanned)

= P (target detected)
p (target scanned)

The probability that the target is detected is given by EA/A, and the
probability that the target is scanned is obtained from Ea. 11 by
setting p(x,y,t) equal to 1. Performing these substitutions we obtain:

P (target detection/target scanned)

EA

(20)

= na.T- -r
A(l - e )

=Effective Area
Expected Area Scanned

The effectiveness expressions obtained in this section are illustrated
below with the aid of an example.

Example

Consider a Hypothetical Incremental Flare whose candle power and
descent altitude-time profile is shown in Fig. 5. The scenario consists
of a search area which is a square 3000 feet on each side and a single
observer who can scan 106 ft 2/sec., located at an altitude of 200 feet,
6500 feet back from the center of the search area. The reflectivity of
the target is 0.14 and the background is 0.10. The target diameter is
15 feet. The flare is dropped directly over the center of the search
area, wind drift is assumed to be zero, and the atmospheric visibility
is 15 miles.

Figure 6 shows the glance target detection probability that exists
30 seconds after flare initiation. Notice the rapid falloff in glance
detection probability on the front lighted portions of the search area.
Figure 7 depicts the area illuminated, Ea. 4, as a function of flare
burn time, and Figure 8 depicts the effectiveness measures as a function
of flare burn time. Curve A indicates that the maximum average target
detectability occurs early in the flare burn. It may be desirable to
design the candle to provide a high target detectability at the beginning
of its burn before countermeasure actions can be taken by the enemy.
A flat curve would indicate a flare design which provides constant
average target detectability during its entire burn. Curves B and C show
the probabilities of single target detection up to a given time. The
two curves converge since,for the parameters used,the probability of
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scanning the entire search area during the entire flare burn is
virtually 1.

Conclusions

The mOdel described in this paper is a general purpose system
model developed at Picatinny Arsenal for the purpose of evaluating
illuminating round effectiveness. The model has already been
successfully applied to answer questions regarding fuze accuracy
requirements. The model should be particularly applicable in
evaluating advanced illuminating round design concepts such as the
incremental flare. In fact the model can be used to evaluate the
relative importance of each of the design parameters and thus enable
intelligent decisions regarding the allocation of development funds.
The model can also be applied to questions of doctrine, tactics and
the development of firing tables.

Comprehensive documentation of the model, including the computer
code, is given in Reference 4.
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PA LDNG INCREMENT A
16.28.20. 04/11/75

SEC. AFTER FLARE INIT.= 30.00
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LAUNCHING OF ELECTROMAGNETIC SURFACE WAVES AT A plANAR METAL-AIR INTERFACE

J. M. Zavada and E. L. Church
Pitman-Dunn Laboratory

Frankford Arsenal
Philadelphia, PA 19137

ABSTRACT. We consider the two-dimensional problem of a line source located
in air above a homogeneous metal half space. The incident field is represented
as an angular spectrum of plane waves, and integral expressions for the reflected
and transmitted fields are obtained by satisfying the usual electromagnetic
boundary conditions at the interface for each plane wave. The properties of these
fields are examined in the far-field region by evaluating the integrals by the
method of steepest descents, including the effects of branch cuts and poles. This
method indicates that for certain values of the complex permittivity of the metal,
slow Zenneck surface waves are excited. These waves decay exponentially away from
the interface, propagate along the surface with a phase velocity less than that of
light, and have a transverse attenuation length determined by the conductivity of
the surface. An expression is derived for the power carried off by these surface
waves,

1. INTRODUCTION. In recent years there has been considerable interest in
the generation and propagation of electromagnetic surface waves at optic~l and
infrared frequencies. These waves are characterized by an exponential d~cay away
from the gUiding surface and have been excited on a number of open-boundbry struc­
tures. l In particular, these surface waves have been generated directly on corru­
gated or dielectric coated planes; and indirectly, by means of a prism coupler,
on smooth, uncoated plane surfaces. 2 The main interest in these waves lies in
their potential application as surface probes3 and in various electronic devices. 4

These surface waves may also playa significant role in the increased ab­
sorption of mirrors due to surface microroughness. 5 To determine their actual
importance, it is necessary to calculate the amount of energy that is coupled
into these waves by surface corrugations or roughness, Our approach to this
problem has been based on a classical EM scattering formalism which was develop­
ed for radar scattering, augmented with a perturbation expansion appropriate to
small scales of roughness. 6

In our investigation of the effects of surface roughness, we have found
that electromagnetic surface waves can be excited on a smooth, uncoated plane
surface without the use of a prism coupler. 7 The present paper demonstrates
this result and specifies the conditions which are necessary for the launching
of these waves. This paper also outlines the general formalism used in our
continuing studies of slightly rough surfaces.

2. PLANE WAVE REPRESENTATION OF FIELDS. We treat the two-dimensional prob­
lem of a line source situated in air a distance h above a homogeneous half plane
(Fig. 1). The permeability of the entire plane is that of the vacuum, ~o. The
permittivity of air is 8

0
(the free space value) and that of the medium is
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H i ( ) J!! (-1=D-)z x,y =J2 exp - 4

(1)

8 = (8
1

- i€2) 8 0 = €€o. We allow 8 to be a complex quantity ~o allow for possible
losses in the medium. The line source has a time dependence e1wt (which will be
suppressed in the following) and is specified by:

(2) I

Ho (kor)

where (x,y) are the coordinaZ2~ of the observation point; r l is the distance from
the source; ko "" 2n /11. and He (.• ) is the zeroth order Hanke 1 function of the
second kind. We have chosen a p-polarized line source since only this polariza­
tion will lead to surface-wave excitation in this particular problem.

The first step in our calculation is to represent the incident fields in
terms of a spectrum of plane waves. 8 This procedure is closely related to the
Fourier expansion of the fields and originates in the work of Sommerfeld, Debye
and Weyl. In fact, one of the standard integral representations of the Hankel
function is in the form of a plane wave expansion:

(2 )
(2) 1

He (x,y) = - J exp(+ i ko(x cos Q' + Y sin Q')) dQ'
TT C

where the sign convention (- for y > 0,
vergence of the integral. In Eqn. (2),
of integration in the Q' plane (Fig. 2).
which is valid fQr the half-space below
expansion for HZ

1
;

+ for y < 0) is chosen to guarantee con­
a is a complex angle and C is the path

Then, selecting the representation
the source, we obtain the plane wave

(3 ) i
Hz (x ,y) K J'n c p(Q') exp(i ko(x cos a + y sin a)) da

where K = ~ exp (- iTT) and P(Q') = exp(- i ko h sin ry). Here P(Q') is the spectral
density o£~he field~nd the exponential factor is a plane wave. Since Q' can
be a complex quantity, we have two types of plane waves in the spectrum. When
Q' is real, we have the usual homogeneous plane wave of constant amplitude. When
Q' is a complex angle, we have an inhomogeneous wave, i.e., the ~lanes of constant
phase no longer coincide with the planes of constant amplitude.

In order to obtain the reflected and transmitted fields, we satisfy the
usual EM boundary conditions at the surface for each plane wave of the spectrum.
This leads to the following representation of the reflected field H~:
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(4 )
R

Hz (x ,y)
K

:: n J
C

PH(a) pea) exp(i ko(x cos 0' - Y sin 0'» dO!

:: e sin 0' - Je
E: s in a + ~/E:

where p (0') is the Fresnel reflection coefficient for a p-polarized plane wave.
Similar¥y, the transmitted field H~ is represented by;

(5)

where 1 H(a) is the Fresnel transmission coefficient for p-polarization.

3. SADDLE POINT INTEGRATION. Since the integral expressions for H~ and
H~ cannot be solved in closed form, we investigate the properties of these fields
by the method of steepest descents. In this method, the original path of integra­
tion in the a plane is deformed into the path of steepest descents,IO and then
an asymptotic expansion is performed to obtain the far~field behavior of the
fields. However, if there are any singularities in the integrand (poles or
branch points), Cauchy's theorem requires that we include their contribution to
the integral. Deforming the contour C into the path of steepest descents S,
then leads to the general result:

(6) S' + l'b + 2ni r Res.
S ,j.C.

In Eqn. (6)l
b

, represents the integration along the branch cuts which are
crossed and 0 .c. r Res. is the contribution from the residues of the integrand
at the poles which are encountered. The integral11long S, :'s' yields the
radiation field and fb leads to lateral waves. The res~dues represent
the surface waves whichcare excited.Therefore, the saddle point integration gives
us a means of distinguishing the surface waves in the resulting fields. Also
we notice that the fields will contain surface waves only if the integrand has
a pole which is encountered as the contour is deformed.

First, we apply this method to the reflected field H~. It is convenient
at this stage to introduce polar coordinates (R, (,) defined as in Fig. 1;

R cos i x
(7)

Then Eqn. (3) can be rewritten;

R sin y + h

(8) HR :: ! r p (0') exp(i ko R cos(. + o:»dO'
Z n c H
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The saddle point is easily found to be as : IT - ~ and the curve of steepest
descent passing through as is defined:

(9)
cos (0 - as) cosh u = 1

sin (0 - a = tanh uS

where 0 = Re a and u = 1m a. This curve is denoted by S(as ) and is shown in
Fig. 3.

12
The only poles in the integrand of Eqn. (8) are those of PH(a). From

Eqn. (4), we find that these poles are defined by:

(10)

cos Ql p

sin a p

=+r--e.
~J1+€

I

Two of these poles are relevant to the present discussion. If we let Jell + e =
A - iB and 1/~ = Dl + iDZ' then these two poles 0.'0 and an are given by:

(lIo = - up - i up

an : IT +0- + i D
P P

(11) ;: D1tan a
p A

tanh D p
= D2-

A

The approximate location of these poles in the a plane is shown in Fig. 3.

The coefficient PH(a) also has branch point singularities aB which are
defined:

(12 )

These branch poin~s and the appropriate branch cuts are also displayed in Fig. 3.

Referring to Fig. 3, we have the following situation: The original contour
C is deformed into the path of steepest descents S(IT - w) which passes through
tRe saddle point ~S. As we vary our point of observation (w goes from 0 to n),
we sweep out the region shaded in the figure. In doing so, we pass over branch
points and this integral along the branch cuts contributes lateral waves to the
field. Also, depending on the material properties of the medium (the value of e),
we may encounter a pole which will give rise to a surface wave.
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r-7~~F~rom Eqns. (9) and (10), it can be shown that if A, the real part of
Jell + €, is greater than unity, then the poles a o and aTI will lie in the
shaded region and a surface wave will be excited. In this case there is a
critical angle ~c which delineates the regions in which the surface wave will
appear in the reflected field. For an angle ~ satisfying either ~ < ~c or
TI ~ ~ < ~c' a pole will be encountered in the deformation of the contour C.
Physically, this means that the surface wave is important in determining the
far-field expansion of H~ only in regions near the surface l3 (Fig. 4).

Since the value of Re Jell + e is essential in determining the existence
of surface waves in this problem, we restate this condition in terms of el' and
e2 . By solving the equation:

(13) Re~ e = 1
1 + e

we obtain the curve in the complex e plane shown in Fig. 5. The shaded region
corresponds to values of A > 1. Then, if the material has dielectric response
such that (el' e2) is a point in the shaded region, surface waves will appear
in the reflected field.

The transmitted field is treated in much the same way. However, since the
integral contains the factor exp (i ko y Je - cos2 a ), the saddle point integfa­
tion of this field is more complicated. Nevertheless, the decomposition of Hz
into a radiation field, a lateral wave and a surface wave remains valid. The
surface wave again results from the residue of the integral at either ao or on.
Also, the conditions for the appearance of the surface wave in Hi are the same
as those that apply for the reflected field.

4. SURFACE WAVES. We shall now examine the surface waves that are excited
along the positive x axis (1,[r < *c) when Re Jel (1 + e) > 1. By calculating the
residues of the reflected and transmitted fields at an = TI + 0p + i D

p
' we

obtain:

H: (x ,y) H ( i k I~~ = 0 exp - ovv ~e x
1 + e

y/Jl+€)) x > 0, Y > °
(14) H~ (x ,y) ~ e~))= Ho exp(-i ko(~ ~e x

I + E: AjI + e
3/2e

x > 0, Y < 0

The surface wave in Eqn. (14) belongs to the general class of Zenneck surface
waves which are defined by the vanishing of the reflection coefficient PH(a).14
The field H' represents an inhomogeneous plane wave incident on the surface. at

z ,. 1a complex angle e = 0 + i D. At this angle, there is no reflected wave on y
the transmitted inhomo~eneousPplanewave H~. It is impossible to excite these
surface waves on a smooth, uncoated surface with incident homogeneous plane waves.
However, the plane wave spectrum of the line source contains both homogeneous
and inhomo~eneous waves and it is the latter which lead to the surface wave in

IS 'Eqn. (14).
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(15)

In general, the fields H' and HU will exhibit exponential attenuation in- z z
both the vertical and horizontal directions. The horizontal attenuation length
~ is the same for either field and is given by:

..e
H

= ~1_
ko B

B=- 1m J f, / 1 + e

When the medium is 10ssles8 (eZ = 0), ~ becomes infinite and there is no hori­
zontal attenuation. For the field above the surface, H;, the vertical attenua­
tion length £' is:

u

(16 )
DZ = Im(l/~)

and below the surface the attenuation length is:

..ell = __I_
t! k Go

(17)
G = - Im(e/J1 + e)

However, even for a losaless material, both £' and ..ell remain finite, Le.
the wave is still bound to the surface. U U

The phase velocity of the surface wave in the x direction is the same on
either side of the interface and is given by:

(18)

Since A > 1, the phase velocity is less than c and the surface waves are slow
waves.

The time averaged power flux < S > is easily calculated from the following
equation:

(19) *< S > = ~ Re [E x H ]

For the field above the surface (x > 0, Y > 0), we find:
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(20)

F e3
/ 2 2 ( - 2x 2 ( + h »)I H~ I "" 8n I l _ 11 exp '-~ -~~.

Below the interface (x > 0, Y < 0) the power flux is:

< S >//

(21)

I

8 3 /
2

1
2 (--2x ~ 2h ~\

"" 8i1 ~ exp "T.. + f.// - Y )
H D 1)

several comments need to be made concerning Eqns. (20) and (21). The first
concerns the factor exp (-2h/~~) which is present in both < S >~ and < S >v.
This is the "height-loss" fact~r, well-known in antenna studies, and indicates
that the power coupled into the surface wave is a maximum when the source is on
the interface (h "" 0). As the source is moved away from the surface, the power
in the surface wave will decrease exponential1y.16 Secondly, the power flux < S >'
is at an angle - ° with respect to the positive x axis. In general, power flows
into the surface agd accounts for ohmic losses. For a lossles medium, 0 p "" 0,
and the power flow is parallel to the interface. Similarly the power flux < S >H
is directed into the medium in the lossy case. However, when e2 "" 0,< s >H is
parallel to the interface but opposite to < S >~ 17

Now we consider the power flux per unit length in the z direction across the
plane x = xo ' This quantity is denoted by Px(xo ) and is defined as

CD 0

(22) Px(xo)""J <S>"'5(dy+j' <S>"·Qdy
o _00

Using Eqns. (20) and (21) for the power, flux, we obtain:

3/2 ., 2

Px (xo ) =" 8n~/~:' I ; _ 1 I"' exp (- ~:o /

(23 )

( ' 2~ [.. r;-~'- II G1 IIexp -"?' £ Re -- + ~ Re ..,
--.... XI _ 1) 1 + E: 1) E: + r::" -,~,

~

f .. by·.18Then the power coupled into the sur ace wave Ps 1S g1ven
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Ps =: 2 Px (0)

{Sn j~~ I
3/2

I ~~ )=: e exp ( -e2 - 1
u

(24 )

I j/ j~: E:

r-

] lRe + 1./1 Re III JI U D c_j8 ,Jr=t-e J1_

For large values of I E: I , the power carried off by the surface wave is predomi­
nant ly due to the field above the interface and is proportional to I e I-~. Also,
-forn the factor, exp(-2h/£~), this power will be appreciable only if h 5 £~,
i.e., the line source must be located within the vertical attenuation length of
the resulting field.

5. CONCLUDING REMARKS. We have shown that with a p-polarized source it is
possible to excite surface waves directly on a homogeneous, non-magnetic half­
space provided that the dielectric response of the medium is such that
Re Je/ (l + e) > 1. For metals, this implies that the frequency of the source
must be below the plasma frequency of the metal. The resulting surface waves
are Zenneck waves and exhibit exponential attenuation away from the interface.
We have also derived explicit expressions for the attenuation lengths and for
the Poynting vector of these fields.

The duality principle implies that similarly, it is possible to excite
surface waves on the planar interface of media having different magnetic per­
rneabilities using an s-polarized source. Our results can be restated to apply
to this case by simply substituting E ~ H, H ~ -E, and ~ ~ € in the above
fonnulae.

The present investigation represents one facet of our continuing study
of the electromagnetic (optical, infrared) properties of surfaces. These results
fonn an intermediate step in the calculation of the launching efficiency of
electromagnetic surface waves on a corrugated or randomly rough surface. Such
calculations would apply to the coupling of electromagnetic radiation into
surface structures and relates to problems connected with laser mirrors, surface­
wave devices, and integrated optics.
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COMPARISON OF P~RTTJRBATION-THEORETIC AND EXACT CALCULATIONS
OF NONLINEAR OPTICAL PROPERTIES OF OPTOELECTRONIC MATERIALS

s. S. Mitra,* L. M. Narducci,t and R. A. Shatas
Quantum Physics, Physical Sciences Directorate, US Army Missile Command

Redstone Arsenal, At 35809

ABSTRACT. Nonlinear absorption coefficients due to multiphoton
transitions induced by intense radiation fields have been calculated
for direct bandgap semiconductors at 0.964, 1.06, 1.318, and 10.6 ~m

laser wavelengths and compared with experimental results. Second-order
perturbation models of Braunstein (interconduction band transitions) and
Basov (intravalence or intraconduction band transitions) in their original
form yield underestimates and Slight overestimates of the nonlinear
absorption, respectively. Corrections to these models based on a detailed
consideration of effective band mass and interaction parameters are pre­
sented which decrease the discrepancy between the theory and the experi­
ment. The Keldysh model gives second-order absorbances that are in
between both perturbation calculations; also, it predicts very well the
one-photon band-edge absorbance in GaAs and lnSb. All models predict
0016' the correct order of nonlinear absorption coefficient (typi.cal 0'2 =
10- ••• 10-8 Cm W- l ). Inclusion of exciton bands is needed for a close
agreement between theory and experiment. This suggests that the incor­
poration of details of energy bands in solids in semiclassical nonlinear
optoelectronic calculations is more important than a full accounting of
quantum electrodynamical corrections.

1. INTRODUCTION. Under illumination by intense coherent infrared
radiation sources presently available, many optoelectronic materials are
driven into a nonlinear response region. In this paper, we analyze pro­
cesses contributing to the nonlinear absorption of light by electronic
transitions taking place as a result of a multiquantal process in a dielec­
tric or a semiconductor material usually transparent to low intensity
radiation. We also show that the absorption at high radiation fluxes is
describable by a nonlinear differential equation. For the case of a weak
radiation field, this equation can be linearized and its solution yields
the Lambert-Beer law. At high intensities, however, nonlinear terms
dominate, and consequently, a general analytic solution is not available.
Physical arguments must be invoked to separate terms in powers of intensity.
For each particular ratio of materials properties to radiation flux param­
eters, one particular term dominates the absorption. Electronic transition
rates induced by photon processes of appropriate multiplicity enter as
coefficients in the nonlinear differential equation describing the absorp­
tion. Their calculation can be undertaken in the framework of the time­
dependent perturbation theory of wave mechanics; also, a semiphenomenologi­
cap approach employing the rudiments of the "dressed state" concept of the

*Permanent address: Department of Electrical Engineering, University
of Rhfde Island, Kingston, RI 02881.

Permanent address: Department of Physics, Worcester Polytechnic
Institute, Worcester, MA 01609.
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quantum field theory is parametrized in terms of the one-electron effec­
tive mass approximation. In the perturbation-theoretic approach, a semi­
classical treatment of the interaction operator is undertaken in Which
the vector potential of the Maxwell field is used to describe the optical
radiation, and the oscillating electron in the momentum representation
accounts for the electronic motion. The description is complicated by
the need to employ the effective mass parametrization of the energy band
theory of the solid state. Within the limits imposed by these fundamental
difficulties, numerical methods were developed to calculate multiphoton
absorption for a number of technologically important semiconductors.
Because of a rather unsatisfactory state of the fundamental knowledge in
the nonlinear quantum optics from both the physical and the mathematical
points of view, a deeper insight through the employ of methods leaning
towards the axiomatic quantum field theory was sought. One significant
aspect of this approach is that the dynamic eigenlevel shifts of the origi­
nally quasi-stationary states caused by the turn-on of the radiation field
can be incorporated at the beginning of calculations. This fast-varying
modulation of the eigenfunction of a discrete state of the matter field is
not usually accessible by the perturbation expansion of the first-quantized
wave mechanics simply because the order of perturbation expansion usually
is not carried out beyond the first-nonzero contribution. Computerized
numerical solutions for transition probabilities in various approaches
are given and compared with experimental data; disagreements between
theory and experiment are shown to arise from certain inadequacies of the
theoretical approach. Suggestions with respect to the further development
of the nonlinear quantum optics of solids are offered. In reviewing the
research literature on the multiphoton absorption processes in gases, we
note extensive investigations in recentyears. I - 3 Unfortunately, despite
numerous theoretical and experimental contributions, there is a wide scat­
ter between both the measured and the predicted values of multiphoton
absorption. Because of the many applications of pulsed lasers, there is
a need to identify theoretical approaches which are suitable to predict
at least the order of magnitude of multiphoton absorption in optically
transparent materials. In the case of gases, the ratio of the ionization
potential to the photon energy of a typical pulsed laser is rather high,
therefore atomic photoionization experiments are not suitable to test
theories constructed for optical electromagnetic fields of moderate
intensity. Specifically in what follows, we compare two low-order per­
turbation treatments with a semiclassical procedure in which the band
distortion due to the electromagnetic field is taken into account. Within
the context of models proposed by Keldysh,4 Braunstein and ackman,S and
Basov et al.,6,7 we calculate second-Jrder absorption coefficients for a
number of direct-bandgap semiconductors and compare theoretical predic­
tions with available experimental results. In section 2, we consider the
rate equations describing the nonlinear absorption. In section 3, we
outline a general formulation of the multiphcton absorption within the
semiclassical radiation theory in the electric dipole approximation.
Section 4 deals with the Keldysh "exact" model which employs conduction
and valence band electronic wavefunction "dressed" by the radiation field.
Section 5 contains the perturbation-theoretic approaches of Braunstein
and Ockman. Comparison between the theoretically predicted and the experi­
mentally determined values of nonlinear absorption coefficients is given
in section 6.
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2. ATTENUATION OF LIGHT BY NONLINEAR ABSORPTION. In a transparen~

material, residual absorption of light may be related to a number of
independent processes such as multiphoton and -phonon excitations, pres·
ence of residual free carriers or impurities, creation of excitonic
states, and perhaps phonon parametric amplification. At sufficiently
high intensities of the optical field, free carriers created through the
elementary excitation processes enumerated above, may contribute to
the time dependence of the absorption through the free carrier inter­
action with the electromagnetic field (so-called inverse Bremsstrahlung).
The time dependence of this part of absorption follows from the rate
equations describing the free carrier density and shows typically transi­
ents of 10-12 to 10·S sec duration reflecting the trapping and recombina­
tion rates in solid materials. In these considerations, we will neglect
these transient contributions.

For the steady-state description of the nonlinear absorption, we
argue that for a given material with a fixed bandgap between the valence
and conduction bands Eg and a given incident photon energy hw, the
photon absorption on ~-th order dominates. Here ~ denotes the ratio
(E !hw + 1), and the brackets ( ) stand for the integer part of this
ra~io. Although linear energy losses caused by nonresonant processes
will always be present even in the purest materials, low-intensity
measurements can yield reliable values of the linear absorption coef­
ficient. Hence observed intensity loss due to multiphoton absorption
should be satisfactorily described by the phenomenological rate equation

(2.1)

where t represents the spatial coordinate along the direction of travel
of the light in the material, and ~ is the v-photon absorption coefficient.

~

The total experimentally observed intensity attenuation should be cor-
rected for the contribution due to nonresonant losses. The corrected
value provides the rate of intensity loss dI/dt due to nonlinear absorp­
tion processes.

In the above rate equation, I denotes the incident intensity (light
flux in units of W cm- 2). The dimension of the ~-th order absorption
coefficient a~ is (length)2~-3/(power)~-l. If the multiphoton process
of order ~.dominates, we can express the attenuation rate of the light
flux as

dI c ~a"I~
dt == - L.J v

-~ ~

Where c is the velocity of light in vacuum, and €~ is the high-frequency
dielectric constant of the material. The relation between the flux in
the material I [W cm-2J and the peak electric field am~litude Eo [V cm- l ]
in practical electromagnetic units is given by I = ~(Eo ~/Ro)' where Ro
is the vacuum impedance (377 0). The relation between the flux
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I [W cm-2J and the photon number density N h [cm-3] is given by
I = (cl~ boo Nph. Accordingly, the ratg of photon absorption per
unit volume is expressed by

dN h C/ dN
--l!!! "" - ...~ 1\1 :: _ \I ~

dt r~ dt

Where Ne designates the number density of free carriers created by across
the gap ionization through the v-photon absorption. The right-hand side
of the above equation is also a consequence of the energy balance condition
since the rate of the photon absorption must be v-times larger than the
rate of the free carrier creation; hence dNph/dt+ \I(dNe/dt) :: O. We
also designate

where w is the multiphoton transition rate; consequently, the mu1ti­
photon absorption coefficient for the \I-th order process is given by

(2.2)

In eq. (2.2) €~ is the high frequency dielectric constant, and the factor
of 2 is introduced to account for the free carrier spin degeneracy. Note
that despite the apparent dependence of the absorption coefficient upon
Eo, the actual calculated numerical values of c/v given in section 6 are
field independent.

3. MULTIPHOTON ABSORPTION BY THE SEMICLASSICAL TIME-DEPENDENT
PERTURBATION. The theoretical description of multiphoton
absorption is based on the employ of second- and higher-order time­
dependent quantum mechanical perturbation theory. In the case of the
two-photon process, it has been first shown by M. Goeppert-MayerBthat
the interaction term coupling the momen.$urn of the electron p with the
vec.tor potential of the Max-yell field A, given by (e/mc) P . 1, can be
canonically transformed to P • E. This transformation is valid when the
linear extent of the interacting electron-ion system is small with respect
to the wavelength of the radiation tield (this condition is readily
satisfied for the electric dipole mediated transitions into far ultra­
violet wavelengths); subsequently, either of these interaction terms
can be used in perturbation expansion.

At first we shall review the salient features of the perturbation
theory. Let there be two eigenstates of energy Ei and Ef; we are con­
cerned with an electric dipole transition between them induced by photons
of energy hll < Ef .. Ei. Such transitions can then only take place by
the participation of more than one photon. The order of the photon process
is obviously given by (1 + (Ef .. Ei)lhrn) where ( > indicates the integer
part. The probability of such transitions will depend
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on the number density of photons or the electric field intensity of the
radiation. Large field intensities will also introduce level shifts.

Let us consider the time-dependent Schrodinger equation

x, .. ih 21at (3.1)

The Hamiltonian X consists of the unperturbed time-independent Hamil­
tonian Jf and a time-dependent perturbation term X' (1:, t). If 1jr~(t)
defined by

(3.2)

are .the eigenstates of~, *~(r,t) is given by

(3.3)

The general state function, which is the solution of eq. (3.l)t can be
expressed as a superposition of states

...
• (r, t)

n

a (t) 1jr°(tt)n n (3.4)

The probability that at any time t the system is in a state with energy
En is given by Iau(t)12. Substituting eq. (3.4) in eq. (3.1), and making
use of eqs. (3.2) and (3.3), one obtains

a (t) ... ih
1
'"' a ,(t)(* IJt'lw ,)n L..J n n n

nl

• (3.5)

Equation (3.5) may be used to solve an to any order. The zeroth order
coefficients ~o)(O) at the time t = 0 are zero except for the initial state,
for which

a(o) (0) := 1
1 •

The first order coefficient a(l)(t) is thereforen ..

a(l)(t) :: .1...1 t (1jr Ix'l1jr ) dt'
n ih 0 n i

To obtain the second order correction to the coefficient a (t), one
n
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substitutes the above value of ~l)(t) in the right-hand side of eq.
(3.1) and solves for a~2)(t). Continuing this iterative process, one
can write for a general n-th-order correction

a(n)(t) "'" (..!..)nft<~ l:tt'l ~ > dt'ft'<~ Ix'io/ > dt" •••
f ih f n n m

o ·0

n-l
t

~ [ (tsix' Io/i> dt (n) •

o

(3.7)

The repeated indices of the wave functions are the so-called intermedi­
ate states. With the use of eq. (3.3), eq. (3.7) may be rewritten in
terms of the unperturbed wave functions as

1 n [ (~~ljCfl1jr~)= (0;-)
ih E - E ± h:.u 1.••::I::hwn r n

For the sake of generality, every one of the n-photons has been assigned
a different frequency ill ~ ill •

n m

The transition probability rate may be readily obtained from (3.8)
and is given by

(3.9)

So w. f will contain square of the expression in the square bracket of eq.
(3.8Y, and the integral in eq. (3.8) will introduce a a-function

to satisfy the energy conservation requirement.

For optical transitions in a crystalline solid, the initial and
final states are obviously the valence ~ld the conduction bands, respectively.
The choice of the intermediate states accounts for different results in
different calculational schemes. The order of the transition equals the
number of quanta of the perturbing field absorbed or emitted. The inter­
mediate states do not appear in the a-function but in the denominator
of the square of the pre-integral terms of eq. (3.8). Therefore the
contribution of the intermediate states to the transition probability
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becomes significant when they are located close to the initial or final
states.

I~ the presence of a radiation field described by the vector poten­
tial A , the kinetic energy of the electron is modified to

1 ,... e 1.. 2
- (p - - )2m c

which as a result introduces a perturbation Hamiltonian in eq. (3.1)
of the type

1,... 1x' = - p •me (3.10)

..." ~ -+ ...where A :: A e l exp [ik • r - wt]. Here, k and to are photon wave
vector and ~requency, respectively. and ~ its unit polarization vector.
In eq. (3.10) we have neglected the 111 2 term, which is usually very
small at the wavelengths and intensities in question. The amplitude
~o of the vector potential is related to the photon density Nph by

2
2 27 N h he

A "" --.I;:;p~--
o tOe

«I

(c.g.s.) (3.ll)

Where e~ is the dielectric constant. The calculation of the transition
prollabi-lity rate then boils down to the calculation of the matrix elements
of p • A between the valence band (or bands), the chosen intermediate
levels and the conduction band. This is essentially what Braunstein et
a1.5 and Basov et al. 6,7 models pertain to do.

Keldysh treatment. 4 however. differs from the above scheme as it
jlso includes the level shifts caused by the perturbing electric field
E , which was neglected by B!aunstsin and Basov. The energy shift of
a level induced by the field E :: R E exp riCk • 1 - wt)] is given
by 0

1

-+ ... 1 2 .... .... 2
. 1 IPnm • Eo IPmn • Eol

AE "" - +n 4""E -E -htO E -E +hoL..J n m n m
m

• (3.12)

where the summation extends to all other states of the system. In the
case of a semiconductor. these level shifts account for the change in
bandgap in the presence of a field, which in the cast] of static fields
is fairly well known, and is termed the Franz-Keldysh effect. Keldysh's
treatment for the multiphoton transition probability between shifted
levels incorporates the dynamic Franz-Keldysh effect, and will be described
in section 4.
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4. THE KELDYSH "DRESSED STATE" MODEL. Keldysh4 treated the multi­
photon absorption as the high frequency limit of the time-dependent
tunneling induced by the oscillatory electric field of the laser radia­
tion. In other words, a unified description is available for the auto­
ionization process under the influence of a strong low-frequency field
and for the multiphoton ionization induced by a strong high-frequency
field. Keldysh's treatment applies to both isolated atoms and crystal­
line solids (e.g., semiconductors). In both cases Keldysh calculates
the probability of direct electron excitation from the ground state (or
valence band) to the continuum (or conduction band) and the excitation
probability through intermediate states of the discrete spectrum. The
intermediate states could be higher excited states of the Coulomb field
of isolated atoms, or impurity levels and excitonic states in crystal­
line solids.

Keldysh considers a system described by a Hamiltonian of the form

(4.1)

Where ~ is the kinetic energy term, ~ is the Coulomb contribution to
the potential energy (or the crystal field in solids), and:KF is the
interaction energy of the bound charge in a periodic electric field
E(t) : E cos wt. The electron is assumed to be initially in the un­
perturbe~ Coulomb ground state given by the wave function

'o(r,t) : t (r) exp (-ia t!.h)o 0

... 1
\ exp (-ria) exp (-i8 tlh)

3 00
(TTa )

o

(4.2)

2 2where a = ~ I~e z)is the z-charged atom Bohr radius and $0 its ioniza-
tion °potential.

In the case of a crystalline solid, the Bloch wave function is modi­
fied by the presence of the electromagnetic field as follows. (In a sense,
the bare electron state is "dressed" by the electric field component of
the e.rn. field.)

.~v) (t, t) (v) c+
exp l~ (~(t) ... _[,tclrEv[P(T )J)! (4.3)= up(t) (r) • r

'where

...
c+ ... eE

+ 0 • (4.4)pet) = p - Sl.n wt
l.\)

(v) ...
The amplitude functions up(t)(r) correspond to a valence electron with
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momentum p(t) and have the translational symmetry of the lattice. The
principal difference between the traditional treatment of this problem
and the Keldysh approach is that he recognizes the modification of the
unperturbed bands under the influence of the field. ~is modification
amounts to a replacement of the unperturbed momentum p with the time­
dependent momentum given by eq. (4.4). The excited electronic states
associated with the continuum of an atom or in the conduction band of
a solid are assumed to be unaffected by the electrostatic Coulomb energy,
but are modified by the perturbing effect of the electromagnetic field.
Thus, in the case of isolated atoms, the ionized electron is described
by the solution of the Schrodinger equation

ill ti :: (t? 2 ..., • -;) t (4.5)
at - 2m 'i1 ~ eE(t)

which is given by

=exp{k(p
~

sin UJt) . 1 }
eE

t ~,t) +-.2.
P w

{- t t dT (p
~

sin UJTn1 eE
X exp 2m

+ ---2 (4.6)
w

For the case of a solid, the conduction electron is described by the
Bloch function

(4.7)

One again notices that the wave function of the final state is also dressed
by the perturbing action of the field. As a consequence, the electronic
transition does not occur between unperturbed states, but rather between
nonstationary states in which the electron acceleration due to the field
1s taken into account. Finally, the transition probability rate is cal­
culated according to first order perturbation theory. The calculated
transition probability is then summed over all possible final momenta
of the quasi-free electron.

In order to arrive at an explicit expression for the transition
probabilit~Ke1dysh used the following parabolic energy-band relation
for a solid

(4.8)

where m* designates the reduced effective mass of the electron-hole pair
l/m* "" 1/00* + l/nh' Eg denotes the wid th of the bandgap, and 1he m.smen­
tum and k-~pace representations are connected by the relation p :: hk.
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In the limiting case when the parameter

Ul
y-­

eEo
(2m*E )-\

g
(4.9)

is much larger than unity (a condition which is readily satisfied for
most of crystalline solids), Keldysh's transition rate (electronic transi­
tion probability per unit volume and per unit time) is given by

3

w ... i;Ul (m:)2!li[(2(X ~ I) - 2x)~J

(4.10)

The meaning of s~bols in eqs. (4.9) and (4.10) is given below:
y a 6.45 X 103 (m*Eg)2/(AEo)' where m* is given in units of electron
mass, Eg in eV, A-wavelength of incident light in vacuum (in ~m), Eo
is the electric field amplitude in the material in units of MV m-1, ~

_z2 z y2 ( 2 2 2
fez) = e fa e dy is the Dawson integral, x = Eglhrn 1 + e Eo/(4m~ Eg) ,
and <•••) is the integer part of the argument.

Up to five photon transition probability rates have been calculated
by means of relation (4.10) for a number of semiconductors as function
of wavelength of light at a given field intensity of 10 MV m- 1 in the
material. The relevant band masses and bandgaps used in these calcula­
tions are listed in Table 1.

Table 1. Material parameters used in calculation of multiphoton transi­
tion rates as function of energy of incident laser light shown in

figs. 1 to 6.

Effective mass ratio
Bandgap Reduced

Semiconductor (eV) . Electron Hole Pair mass

GaAs 1.53 0.068 0.5 0.06
GaSh 0.8 0.047 0.5 0.043
lnAs 0.46 0.02 0.41 0.019
PbS 0.34 0.66 0.5 0.364
InSb 0.26 0.013 0.6 0.0127
PbTe 0.24 0.22 0.29 0.125

The log w vs photon energy plots are given in figs. 1 to 6. Num-
bers written above each plateau of the transition rate indicate the integer
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value of (Eg~ + I). Apart from quantitative differences, the qual­
itative functional dependence in figs. 1 to 6 is strikingly similar in
that a quasi-resonant behavior at integer E /hw values is displayed.
This reminds us of one of the most obvious ~eatures of the multiphoton
tl'ansition probability calculated by Bebb and Gold lO for hydrogen-like
atoms which shows the distinctly resonant dependence of the excitation
probability as a function of the incident photon energy. While the
energy levels of isolated atoms are clearly quite different from the
bands of semiconductors considered in Keldysh's model, a quasi-resonant
dependence of the transi tion rate on the incident photon energy seen in
our calculations 1s qualitatively co~rect.

It should be also remarked that Weiler et al. l1 have extended
Keldysh's calculation to include the effects of longitudinal or trans­
verse magnetic fields on the interband electronic transition. Weiler's
conclusions are in agreement with Keldysh's results for zero applied
magnetic field. One expects a series of edge absorptions of the form
~ (vhw - E )~ where v is the photon multiplicity. Such a behavior
is indeed ~ound in the negative slope of the transition rate after each
quasi-resonant "peak" as seen in figs. 1 to 6. It has been argued that,
at best, Keldysh's theory should provide acceptable results only for
processes of fairly high photon multiplicity and that its application
to two-photon absorption processes should not yield more than gualita­
tive agreement with the experimental data. Recent experiments I2 involv­
ing four-photon transition in znS are at variance with Keldysh's pre­
diction, while they are in fair agreement with perturbative semiclassical
calculations. 13 However, a good agreement with three-photon absorption
in CdS has been found. C. H. Lee measured14 the three-photon absorption
coefficient ~3 = 1.3 • 10-2 cm3/ GW2 for single-crystal CdS. Our calcu­
lations based on the evaluation of eqs. (2.2) and (4.10) yielded a value
of 0'3 "" 0.2 • 10-2 cm3/GW2• We have used Eg "" 2.42 eV, €ce == 5.32 and"
m* = 0.192 as CdS material parameters in this calculation. A more syste­
matic comparison for the two-photon absorption coefficient is presented
in section 6. An additional feature of the Keldysh model was found
(Which was rather unexpected) that it predicts very well the one-photon
absorption coefficient near the band edge for two thus far analyzed semi­
conductors, GaAs and InSb. It is known that near the fundamental absorp­
tion edge, the one-photon absorption coefficient can be expressed as

(4.11)

where hw is the photon energy, and y is a constant which equals 1/2
and 3/2 for allowed direct transitions and forbidden direct transitions:
respectively. We specialize eq. (4.11) for the case hill > E. In addi­
tion, the exponent y equals 2 for indirect phonon assiste~ transitions
and 1/2 for allowed indirect transitions to exciton states.

Near the absorption edge, where the values of (hill > Eg) become com­
parable to the binding energy of the exciton, the Coulomb interaction
between the free hole and the electron must be taken into account. For
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hw < Eg the absorption merges continuously into that due to the higher
excited states of the exciton; when hw » Eg, higher energy bands will
participate in the transition process and complicated band structures
will be reflected in the absorption coefficient. The least square fit of
absorbance vs. photon energy curves for photon energies near the band
edge of GaAs yields the following values for A and y : A = 44 .15
103, y = 0.499, and A = 44.7 • 103, Y = 0.505 from Moss and Hawkins'
and from Sturge's16 measurements, respectively. Numerical evaluation
of eqs. (2.2) and (4.10) for the one-photon transition case v = 1 can
be expressed by the functional dependence shown in eq. (4.11) with A =
44 • 103 and y = 1/2. Hence, the Keldysh model besides giving the
correct value of the absorption coefficient at the band edge of GaAs
describes very well its wavelength dependence also. This agreement
is seen in fig. 7 where unadjusted calculated absorption coefficients
are compared with Moss and Hawkin's experimental values for photon
energies between 1.42 to 1.48 eVe GaAs parameters used in calculating
the theoretical absorption constant of fig. 7 are listed in Table 2.

Table 2. List of parameters for GaAs used in the theoretical fit of fig.
7. The values for reduced effective mass m* and dielectric constant e

(Xl

have been obtained from [18J and [19J, respectively.

Data source

[15]
[16J (21oK)
[16J (294~)

E reV]
g

1.403
1.521
1.435

m*

0.059
0.059
0.059

10.9
10.9
10.9

For the comparison of theoretical and experimental one-photon absorption
coefficient of lUSb, the experimental data points have been taken from
fig. 3 of ref. 20. The empirical equation which fits the data around
the band edge is listed in Table 3 together with the reduced effective
mass and the high frequency dielectric constant which are needed for the
theoretical comparison.

Table 3. Empirical relation for the absorption coefficients of lnSb
reported .in .[20J. The bandgap energy Eg has been calculated by a least
square f1tt1ng procedure. The reduced effective mass m* and the high-
frequency dielectric constant e~ have been obtained from [19J and [2lJ,

respectively.

4
a = 2.026 • 10 (ho

hv.E in eVg
Eg = 0.2248 [eVJ

m* = 0.0113 m; m =
$ - 15.7
~

9.108 • 10-28 [gJ

In fig. 8 we have plotted the experimental data together with the results
of the numerical evaluation of eqs. (2.2) and (4.10). We note that the
quantitative agreement between the Keldysh theory and the measured data
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is rather good, particularly if we consider the large range of incident
photon energies included in the comparison. A further discussion on the
agreement of Keldysh model with the second-order perturbation theory is
given in section 6.

5. SEC0N:J?.-ORDER PERTURBATIO)l MODELS. In this section, we consider 5
two second-order perturbation models first proposed by Braunstein and Ockman
and by Basov et al. 6,7 As explained in section 3, in the second-order per­
turbation an intermediate state is required to complete the transition from
the initial to the final state of the system perturbed by the radiation
field. A proper accounting of intermediate states becomes important when
their energy eigenstates are close to initial or final states of the sys­
tem, or if they coincide with other real states encountered in practical
materials such as exciton or impurity states. Therefore, the agreement
between the calculated and the observed nonlinear absorption coefficients
will depend largely upon the inclusion of the appropriate details of the
energy band structure.

Braunstein and Ockman5 consider vertical transitions between unper­
turbed parabolic bands. They assume that the only significant intermediate
state is a higher conduction band designated with n in Fig. 9.

E

Fig. 9. The interconduction band
transition model of Braunstein;
v , c , and n refer to the
valence, lowest conduction, and
intermediate conduction bands,
respectively. All energy bands
are taken to be parabolic in the
k-space.

Second-order perturbation theory yields the transition rate per unit
volume for vertical transitions at a given value of k ; subsequently,
the k-dependent probability is integrated over all values of k For
allowed-allowed transitions, the result is

a + a+ n v (Zhw _
ac + a...,

(5.1)

In eq. (5.l),:tCuc and :K:vn are the matrix elements Df the interaction
Hamiltonian between the conduction c and the valence v bands, and the
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intermediate conduction band n , respectively. The free electron
mass is designated with m , and ai (i ~ c,v,n) is the reciprocal effec­
tive mass ratio m/mt for the i-th band, ai ~ m/mt. The energy gap ~E
is the energy difference between the top of the heavy hole band (the only
valence band included in this calculation) and the bottom of the inter­
wediate conduction band.

The interaction Hamiltonian is taken to be of the form

e -+ 1..X:= - p •
mc

We will eva..luate the matrix elements of the interaction term by the so­
called k . p method. 22 In this method, the matrix elements of the effec­
tive Hamiltonian are given by

2
X

j
/I = [E. (k ) + ~2 (1~2 - k2

) ] 0j /I + h (k - k) -+
,~ J 0 m o,~ mo· Pt,j

(5.2)

Consider a solid consisting pf two energy bands denoted by 0 and 1
each having an extremu~ in th~ reciprocal lattice space at ko = 0 and at
corresponding momenta POI =~io ~ P taken to be isotropic. We choose the
zer~ of energy axis to be at the top of the lower band 0 such that
Bo{Ko) = 0 and El(~o) = Eg for the upper band, Eg being equal to the for­
bidden gap width. These assumptions restrict our treatment to solids with
allowed direct transitions between the two bands. The Hamiltonian operator
is then given by a 2 X 2 matrix shown below

ht ...
m • p

x=
h -+k ...• p
m

E + h~2
g 2m

• (S.3)

Its diagonalization yields the following eigenvalues of the matrix (5.3)

(5.4)

For small values of k , the square root in eq. (5.4) can be expanded
in a power series about Eg/Z. Retention of first-term only yields the
following expression for the lower energy band

and

2..2 2
E (k) ~ hl [1 - 1L J

o 2m mE
g
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~2 2
E

1
(k) ... E + h__ [1 +~ J

g 2m mE
g

(5.6)

for the upper energy band. The effective reciprocal mass tensor of the
carrier in n-th band is defined by

(m/m*)
n~

(5.7)

Because of the assumption of isotropic matrix elements in the Hamiltonian
(5.3) of the two-band model, eqs. (5.5) to (5.7) yield scalar reciprocal
effective masses for free carriers, [m/m~J = 1 - 2p2/(mEg), and

2 0
[m/mtJl = 1 + 2p /(mEg) for the lower and the upper energy bands, respec-

tively. We take the lower band 0 to ~e the highest valence band and
the upper band 1 the lowest conduction band of a solid with a direct
energy bandgap. The effective reciprocal masses of holes h in the
valence v and electrons e in the conduction c bands are thus given
by the scalar relations

[m/mjiJ = 1 - 2p2/(mE )
v g

and

[m/m*] ... 1 + 2p2/(mE )
e g

c

respectively.

(5.8)

(5.9)

The band curvatures of the valence and the conduction bands are of
opposite signs which accounts for the opposite signs of the p2 term in the
eqs. (5.8) and (5.9). Keeping in mind the opposite curvatures, we can
rewrite eqs. (5.8) and (5.9) in absolute values to yield

and

Im/m~1 (5.8a)

Im/m*1 : 2p2/(mE ) + 1
'e g

(5.9a)

From (5.8a) and (5.9a), one readily obtains m/~k = 4p2/(mE). The energy­
momentum relation needed to evaluate the matrix elements oi the interac­
tion Hamiltonian in terms of the one-electron effective mass approximation
of the solid state theory is therefore given by
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2 E
E- "" ....& (..!!!..)
2m 8 m*

(5.10)

which is quite satisfactory for small values of k We proceed in
evaluating the matrix elements of eq. (5.1) with the help of eq. (5.10)
and substitute the transition rate into eq. (2.2) for the case v ~ 2.
The second-order nonlinear absorption coefficient is given by

f nc
f
vn

a + a
+ n V

a + ac v
(5.11)

The fnc and fvn denote the oscillator strengths for the transitions medi­
ated by~ and xnc' respectively. In numerical calculations given in
section 6, it is taken that fnc = f vn = 1. All parameters in eq. (5.11)
are expressed in c.g.s. electrostatic units.

Equation (5.11) has been specialized for the case of single photon
beam of frequency w in the material (rather than two beams at two
different frequencies wI and ())2)' Braunstein and Ockman's expression
for the nonlinear absor6ance{iVen by eq. (7) of ref. 5 must be multiplied

by a factor of 1/(e~)(m/(2m*)}2 to obtain our eq. (5.11). The first term

in the corrective factor is due to the different formulation of absorption
coefficient in our eq. (2.2) as compared with eq. (2) of ref. 5, and the
second term arises beca~se we evaluated the matrix elements of allowed
transitions in the k . p approximation rather than by employing eq. (4)
of ref. 5. Our eq. (5.11) includes appropriate factors for spin orienta­
tion and photon multiplicity.

A generalization of Braunstein's calculation for anisotropic energy
bands has been given by Hassan. 23 His results agree with our eq. (5.11)
in the limit of zero anisotropy.

6 7
In Basov et al. ' model, the two highest valence bands vI and v2

and the lowest conduction band c are coupled by the radiation field.
Furthermore, the intermediate states are conduction (or valence) intraband
states as shown in Fig. 10.
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E

.. k

Fig. 10. The energy band model
employed by Basov et al. Para­
bolic energy bands VI' v2 refer
to the bound electrons in valence
band, and c is the conduction
band. Intermediate levels are
provided by intraconduction and
intravalence ~tates. Only intra­
conduction band transitions are
explicitly indicated.

Second order perturbation calculation of this model leads to the
following expression for the second order absorption coefficient

9 4 L ~ '(~ ~) I2
2 2 J2rr e (m*)'"2(2hw - E)2 • P cv

Q' (i) =__• =--_-=- ...:81...- -=.i_

2 c c 2(h.u)5 m2
CI;l

(5.12)

A
~ere e is the unit polarization vector of the incident radiation,
p is the momentum operator of the electron and the index i = 1,2 refers
to the initial state of the electron in the valence bands. Contrary to
Basov et al., we use eq. (5.10) to evaluate the momentum matrix elements,
and furthermore we average over all directions in the k-space. The
total absorption coefficient must contain summation over both valence
band contributions, az = Bia~i). Since each valence band contributes
about equally, we need to calculate only a~l). Therefore values listed
in Table 7 of section 6 must be multiplied by a factor close to 2 to
obtain the total second-order absorption coefficient in this model.

,
In our eq. (5.12), factor of 2 has been introduced to account for

the spin degeneracy. This factor has been omitted in the original work
by Basov et al. Further differences between our eq. (5.12) and Basov
et a1. expressions arise because of an incorrect numerical factor used
in relating the flux intensity with the magnitude of vector potential
in ref. 6. This gives a multiplicative correction of 1/16. Averaging, . h ...
the scalar product Ie. pl2 over all directions in the k-space yields
another multiplicative correction of 1/3. Hence, Basov et al. expres­
sion for the second-order absorbance in the context of eq. (6) of ref.
6 must be multiplied by a factor of 1/48.
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24
. This has been noted previously by Lee and Fan and Fossum and

Chang. 21 The need for this correction does not arise in connection
with our eq. (5.12) because our absorption coefficient az is intensity­
independent and it was calculated from our eq. (Z.2) rather than eqs.
(6) and (8) of ref. 6, and the averaging over the k-space has been also
performed in the calculations listed in section 6. A further difference
betw~en Basov et al. work and our eq. (5.12) arises from our use of the
t . p method in evaluating the matrix elements of the interaction opera­
tor. Because of eq. (5.10), we evaluate

2
m

= E /4m*g

Whereas Basov et al. use the relation pZ/2m = Eg m*/m in connection with
eq. 5 and the relation p2/2m = 3Eg/4rn& in the experimental results sec­
tion of ref. 6. In section 6, we report the numerical evaluation of eq.
(5.12).

6. COMPARISON BETWEEN CALCULATED AND MEASURED ABSORPTION
COEFFICIENTS. In this section, we compare absorption coefficients cal­
culated from eq. (2.2) with available experimental data for the second­
order nonlinear absorption. First, we evaluate the transition rates for
photon multiplicities v = 1 to 3 in the perturbed valence and conduction
band wavefunction model of Keldysh, eq. (4.10). For the second-order
calculation, we also use the perturbation-theoretic approaches for the
two different band models, eqs. (5.11) and (5.12).

In the Keldysh model calculation, it is necessary to evaluate the
Dawson integral numerically by using the trapezoidal rule of integration.
In general, the accuracy of the numerical integration is of the order of
a few parts in 105• If it is desired to increase the accuracy of the inte­
gration, increase the number of intervals N in the program line 260.
The computation time will increase accordingly.

The computer program listed in Table 4 has been written in a modified
BASIC programming language for the HP 9830A calculator equipped with ROM's
containing the mathematics package and the plotter control. This program
(less lines 1000 and above. which contain the calculation of the absorp­
tion coefficient), with an appropriate modification of the plotting rou­
tine, has been also employed in plotting Figs. 1 to 6 of section 2.
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Table 4. HP 9830A computer program used to calculate and to plot the wave­
length dependence of absorption coefficients of the order 1 to3 from eqs.

(4.10) and (2.2). The computer system consists of extended memory core
lIP 9830A, built-in mathematics and plotter control ROM's, the lIP 9866A

printer and the HP 9862A plotter. Instructions for use are contained in
lines 30 to 255.

30 REM THIS PROGRAM CALCULATES THE TRANSITION RATE PREDICTED BY KELDYSH
40 REM AND PLOTS VS PHOTON ENERGY IN ELECTRON VOLTS; KEY IN RUN AND FOLLOW

INSTRUCTIONS
42 REM IT ALSO PLOTS ABSORPTION COEFF. VS PHOTON ENERGY IN ELECTRON VOLTS
50 REM NOTE; AT LEA8T ONE INCREMENT MUST BE ASSIGNED
70 FRINT "INPUT PLOTTER SCALE, XMIN, XMAX, YMIN, YMAX"
71 FRINT
72 PRINT
80 INPUT Sl, S2, 53, s4
90 SCALE SI, S2, 53, S4
95 XAXIS 83, 52/10, S1, 82
100 YAXIS S1, 54/2, 53, S4
115 FLOAT 3
120 PRINT "ENTER GAP IN EV, LAMBDA IN MICRONS"
130 PRINT "ENTER EL. FIELD IN UNITS OF MEGAVOLTS/M, MAS5 IN EL. MAS5"
140 PRINT
150 INPUT G, L, E, M
160 PRINT
170 PRINT "IF YOU WANT TO INCREMENT GAP, KEY IN DELTAGAP; IF NOT KEY IN ZERO"
180 PRINT
190 INPlIT Gl
200 PRINT "IF YOU WANT TO INCREMENT LABMDA, KEY IN DELTALAMBDA; IF NOT, KEY

IN ZERO
210 PRINT
220 INPUT L1
230 PRINT "IF YOU WANT TO INCREMENT EL. FIELD, KEY IN DELTAFIELD; IF NOT,

ZERO"
240 PRINT
250 INPUT E1
252 PRINT "TO PLOT ABSORPTION COEFF. INPUT DIELECTRIC CaNST (E2) IF NOT,

ZERO"
253 PRINT
254 FRINT
255 INPUT EZ
260 N=20
270 PRINT "GAP=";G,"LAMBDA=";L
280 PRINT "EL. FIELD=";E,''MAS5='';M
290 PRINT "G1="Gl;"Ll"""Ll;"E1="E1
295 PRINT "51="S1;"82="S2;"S3="S3;"S4="54

-297 PRINT "E2="E2
300 PRINT
310 PRINT
320 A=8.76057E+36*(M/L)tl.5/L
330 B=1.23752E-08*(E*L)t2/(M*G)
340 X=O.806015*G*L*(1+B)
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350 Rl=INT(X+l)
360 Z=(2*Rl-2*X)t O.5
370 Wl=A*(B/4)tRl*EXP(2*Rl*(1-B)-Z*Z)
380 Y=Z/N
390 P=(1+EXP(Z*Z))*Z/(2*N)
400 F=O
410 FOR I~l TO N~l

420 F=F+EXP«I*z/N)t2)
430 NEXT I
440 W2=P+F*Z/N
450 W=Wl*W2
460 IF Gl=O THEN 520
470 PLOT G,LGTW
h90 IF 0>5 THEN 630
500 G=G+Gl
510 GOTO 320
520 IF Ll=O THEN 570
524 IF E2#0 THEN 530
525 PLOT 1.2395/L,LGTW
527 IF E2=0 THEN 540
530 GOSUB 1000
540 IF 1>21 THEN 630
550 L=L+L1
560 GOTO 320
570 IF El=O THEN 630
580 PRINT E,LGTW
600 IF E>50 THEN 630
610 E=E+El
620 GOTO 320
630 END
1000 X=INT(G/(1.2395/L))+1
1010 A=Z*X*l.2395/L*1.602E-19*754tx*W/(SQRE2tX*(E*lE+04)t(2*X))
10Z0 PLOT 1.2395/L,LGTA
1030 RETURN

GaAs absorption coefficient for photon processes from 1 to 4 order calcu­
lated with the program listed in Table 4 is shown in Fig. 11. The material
parameters used in this calculadon are listed in Table 5. Experimental
data for the absorption coefficient of GaAs are available for the first­
order and second-order transitions only; they are entered as a dot, a
vertical bar, and a circle in Fig. 11. It is seen that the agreement
at 1.5 eV (one-photon linear absorption) and 0.94 eV (two-photon nonlinear
absorption) between the Keldysh model prediction and the experiment is
quite good. The sharp decline in absorption at the increase of the order
of the photon multiplicity will be moderated by the contribution from
the excitonic states. Since the calculation does not include exciton
effects, one can expect that the experimental values will not agree with
the predictions in the range of photon energies up to 0.1 eV less than
that of the absorption edge for a particular order of photon multiplicity.
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Furthermore, impurities g~v~ng rise to energy levels within the forbidden
gap would also increase the absorption coefficient. Undoubtedly, they also
contribute to the large scatter of experimental values seen at 1.17 eV in
Fig. 11. Because none of these contributions are accounted for in the
Keldysh model, the predicted values of the absorption coefficients should
be regarded as lower limits expected in the case of very pure materials.
By inspection of Fig.II, one can estimate that the second-order absorption
will be significant at light fluxes above 106 W cm~2 and the third order ­
above 10 8 W cm-Z for the intrinsic nonlinear electronic transition pro­
cesses in direct-bandgap materials. Absorption coefficients for several
semiconductors of this ty~e are listed in Tables 5 and 6 for fixed laser
wavelengths of doubled Nd +-glass (0.53 ~m), ruby (0.694 ~m), Nd3+~glass
(1.06 ~m), Nd3+-YAG (1.318 ~m), HF (Z.8 ~m), DF (3.9 ~m), CO (5.3 ~m),

and CO
2

(10.6 ~m).

Since the order of the transition is the dominant factor in deter­
mining the magnitude of the absorption, a large variation in the bandgap
with the temperature implies a very large temperature dependence of the
absorption coefficient. This is demonstrated in the last entrY of Table
6 by listing absorption coefficients of PbS calculated at 3000 K and OOK.
Because the perturbative methods have been carried out to the second order
only, comparison of the second-order nonlinear absorption coefficient cal­
culated for the three models of sections 4 and 5 is given in Table 7. For
material parameters used in these calculations and comparison with the
available experimental data, the reader is referred to Ref. 32. We note
that the absorption coefficient calculated from the Keldysh model generally
falls in-between the two perturbation models of Braunstein and Basov.
However, the Basov model usually overestimates the absorption coefficient;
therefore, the Keldysh model values yield currently the best estimate of
the lower limit of the nonlinear absorption coefficients.

7. CONCLUSIONS. Comparison of theoretical models of Keldysh, Braun­
stein, and Basov in calculating the nonlinear absorption coefficients for
direct band semiconductors with forbidden energy bandgaps between 2.6 to
0.15 eV show that the second order perturbation models of Braunstein and
Baso~ differ in their prediction of the aZ by almost three orders of mag­
nitude. The Keldysh model prediction for aZ lies between the two perturba­
tion models and is usually slightly lower than the experimental value. A
large scatter in reported experimental values of aZ (perhaps attributable
to the presence of impurities in real materials) hinders in selecting the
best theoretical approach. However, generally it can be stated that if the
interference terms in calculating transition rates are neglected, the absorp­
tion constants are underestimated (Braunstein and Ockman). Calculations
allowing transitions from several bands (Basov) generally overestimate the
absorption. The Keldysh method in which the effect of the optical electro­
magnetic field on the eigenfunctions of the unperturbed system is incorporated
at the beginning of the calculation gives a slight underestimate of the two­
photon absorption. It describes very well the band edge absorption of the
one-photon process. Intuitively, one would concede that the perturbation
of the eigenstates of the noninteracting system by the light intensities
of interest is significant and that the perturbed eigenfunctions should be
introduced at the onset of calculations as it is done in the Keldysh model.
In addition, the Keldysh model is the only one currently available to
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T",ble 5. Absorption coefficients of order (l)to (3) calculated from the Keldysh model for direct bandgap semicon­
ductors of 2.6 to 1.2 eV bandgap. Material parameters listed in [18J and [31J were used; m* denotes the

reduced effective pair mass and e is the high frequency dielectric constant.
a:>

Material spQcifications
Absorption coefficient of order v

at a given wavelength

. Zv-3 v-Iin unLts cm /W
;. in ~m

J:-Iatc:::-ial Bandgap m"'~ € ;'=0.530 ;'=0.694 ;'=1.06 ;.=1.318
a:>

ZnSe 2.58 (300
o
K) 0.132 5.9 5 • 10-9

(2) 6.4. 10-9
(~) 2.6 • 10- 21 (3) 4.7 • 10-21

(3)

CdS 2.53 (300
o

K) 0.192 5.32 4.7 · 10-9
(2) 6.1 • 10- 9

(2) 1.8 · 10. 21
(3) 3.4 · 10.21

(3)

CdSe 1.74 (300
o

K) 0.124 6.1 6.5 • 10
4

(1) t'.9 • 104 (1) 1.7 • 10-8
(2) 1.65 • 10-8 (Z)

CciTe 1.50 (300
o
K) 0.084 7.21 3.4 • 104

(1) 2.3 • 10-8
(2) 2.7 • 10-8

(2)

G0.As 1.435 0.063 10.9 2.7 • 10
4

(1) 1.9 • 10-8
(2) 2.3 • 10-8

(2)

InP 1. 28 (300oK) 0.062 9.56 3.4 • 104
(1) 2.6 • 10-8 (2) 3.17 · 10-8

(2)

w
'D
w

TQ.ble 6 0
Abso;:pticn coefficients of order (1) to (3) calculated from the Ke1dysh model for direct bandgap semicon-

d~ctors of 0.8 to 0.15 eV bandgap. Material pararr.eters listed in [181 and [31] were used; m* denotes the
reduced effective pair mass and e is the high frequency dielectric constant.

a:>

,

Absorption coefficient of order v in units cm2v·3/Wv-1
Nateria1 specifications at a given wavelength ],. in ~m

Naterial Bandgap m* €: ],.=2.8 ],.=3.9 ;'=5.3 ;.=10.6
a:>

G2Sb 0.8 (OoK) 0.043 14.4 8.7 • 10-8
(2) 3.4 · 10-18

(3)

GaSb 0.69 (300
o

K) 0.043 14.4 1.3 • 10.7 (2) 4.9 • 10.18
(3) 6.5 • 10-18

(3)

lru\s 0.46 (OoK) 0.019 . 11.8 4.6 · 10.7 (2) 6.3 • 10-7
(2) 3.5 • 10-7 (2)

luSb 0.228 0.014 15.68 1.4 • 10
3

(1) 2.1 I 10-6 (2)
PbTe 0.19 (OoK) 0.011 3.69 3.4 • 103 (2) 1.6 • 10-6

(2)

PbS 0 . .34 (300
o
K) 0.36 18.5 2.7 • 104 (1) 1.5 • 10-7 (2) 2 • 10. 7 (2) 1.1 • 10-17 (3)

p~]s 0.15 (OoK) 0.034 18.5 6.5 • 103 (1) 3.2 • 10-6
(2)

_.- _.----~.~---_..~._-



Table 7. Comparison of calculated two~photon absorption coefficient a 2
em W-1 for direct bandgap semiconductors. Absorption coefficients were
calculated from eq. (2.2); for transition rates, eqs. (4.10). (5.1), and
(5.12) were used for Keldysh, Braunstein. and Basov models, respectively.
Contribution from only one valence band is listed under Basov; the total
absorption coefficient should include transitions from both valence bands

and should be nearly twice as large.

calculate absorption coefficients higher than second order since there has
been no published work carrying perturbation theory to a higher than second
order in semiconductors. However, because intensities above 10 9 Wcm~2
are r.quir~d to attain a significant absorption in the third order in pure
materials, such calculations may be superfluous for practical applications
because of the onset of Drude absorption by free carriers created through
the aval~che multiplication induced by the optical electric field. In
fact, the notion that a single physical process can e~pl~in the effects of
an intense laser pulse on a given optical material is too simplistic to
hold because, for e~ample) the multiphoton absorption and the avalanche
lonizat1on are two co~peting processes having a different time dependence.

On the other hand, this contribution demonstrates that it is impor~

tant to include properly the band parameters of the solid state into the
calculation. !n particu!ar l if contributions from excitonic states and
impurity levels should be included) a summation over all corresponding ele­
ments of the interaction Hamiltonian must be incorporated into the calcula~

tion of absorption coefficients. The outline of such a procedure is given
in R~f. 13. Furth.er.IDore) up. to the. third.orderl it is sufficient to use
the p • 1 interaction term in the electric dipole approximation.
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A TIME-DEPENDE~T QUANTIZED NATURAL COLLISION COORDINATES METHOD*

Norman M. Witriol
Physical Sciences Directorate

US Army Missile Research, Development and Engineering Laboratory
US Army Missile Command

Redstone Arsenal, AL 35809

ABSTRACT. In the reactive or nonreactive molecular collisional

energy transfer problem, the quantum mechanical natural collision coord-

inate method has been shown to be useful in predicting the distribution

of the energy of the reactants into the translational and vibrational

energies of the products. This method has only been employed in a time­

independent formalism. However, time-dependent studies of this problem

via the solution of the time-dependent Schrodinger equation in the origi~

nal coordinates have revealed some interesting insights into the dynam-

ical effects taking place. With the goal of obtaining the advantages

of using natural collision coordinates in a time-dependent method, a

study of time-dependent quantum mechanical canonical point transforma­

tions has been initiated. One finds that by proceeding to the Klein-

Gordon equation, a similar formalism to that used in handling time-

independent quantum mechanical canonical point transformations can be

employed. Applying this method, one obtains the transformed Hermitian

coordinate momenta and the transformed Hermitian Hamiltonian. The

Klein-Gordon equation and the transformed wavefunction, in the trans-

formed space, are explicitly displayed.

*The full text of this paper will be published elsewhere.
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COMPUTER SIMULATION OF THE INTERMEDIATE BALLISTIC ENVIRONMENT
OF A SMALL ARM

Csaba K. Zoltani
Fluid Mechanics Branch

Applied Mathematics &Sciences Laboratory
USA Ballistic Research Laboratories
Aberdeen Proving Ground, MD 21005

ABSTRACT. In this paper the results of computation of
the gas flow-In the presence of the moving projectile in the
intermediate ballistic range are presented. The mathematical
model is based on the assumptions of cylindrical symmetry with
unsteady, inviscid, compressible motion of a one component gas.
The flow variables at the muzzle plane were varied continuously
in accordance with the prediction of an interior ballistic
calculation! .

Velocity, pressure and temperature time histories, as well
as pressure contours of the flow field were computed up to real
times of 35~sec. The fine meshing employed in the difference
technique enabled the resolution of significant flow details,
including the backward facing shock at the base of the projectile.
The calculated results are in satisfactory agreement with avail­
able analytical and experimental data.

1. INTRODUCTION. About lOO~sec. before the base of the
projectIle clears the plane of the muzzle of an M-16 rifle, the
first indication of gas motion out of the gun tube becomes apparent.
This is in the form of a weak air shock, traveling at approximately
M=l.S with the pressure rise of the order of 16 atmospheres.
About lO~sec. later, the gases which leaked around the projectile,
while the latter is still in the barrel, appear starting to form
the characteristic gas cloud. First evidence of a vortex forma­
tion around the lip of the muzzle is also observed at this time.
Once the base of the projectile clears the muzzle, the combustion
products stream out of the gun tube, and envelope the projectile,
which at a velocity of 990 [~], is moving slower than the gases:
Near the centerline of the muzzle the pressure is around 600
atmospheres and temperature approximately 2500 o K. A backward
facing shock forms on the base of the projectile, which as the
projectile accelerates, gradually weakens and disappears as soon
as the powder bell is exited by the bullet.

The shock due to the powder bell behaves in the far field
like a point explosion with the center of energy deposition located
about half a caliber in front of the gun tube. The motion of
this shock front is described quite well by self-similar calcula­
tions. At about lOO~sec. after shot ejection, as the projectile
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leaves the intermediate ballistic range, the powder bell is
approximately 17.5 calibers in radius and 22 calibers in length,
measured downstream from the muzzle. A typical shock Mach number
at this time is around M - 2.0.

The presence of muzzle devices complicates the flow field
considerably due to shock refraction and wave interaction. The
muzzle brake used in this study, though an idealized version of
the standard M-l6 muzzle attachment, exhibits all the salient
characteristics of the flow field.

The basic features of muzzle flow have been understood since
the pioneering researchers of Cranz [1] in the 1920's. Numerical
calculation of the flow field have been attempted only recently,
notably by Oswatitsch [2], Taylor [3] and the group at Dahlgren
[4]. The latter two are not quite satisfactory, as explained
elsewhere [5], which motivated the current study.

II. Mathematical Analysis of the Flow Field.

A. The Flow Model. The calculations are based on
a two-dimensional time dependent flow model. The geometry of
the flow field (and of the muzzle devices) is assumed to be
circular symmetric with respect to the axis of the gun barrel.
The flowing medium is assumed to be a one-component, inviscid,
non-reacting gas.

At the beginning of the calculations the projectile
is placed 1.Smm (i.e., three mesh widths) in front of the muzzle
and assumed to have the "muzzle velocity" of 990m/s.

The initial conditions for the gas are ambient pres­
sure (1 atm) and temperature (300K), and zero velocity everywhere,
except between exit plane of the muzzle and the projectile. At
that location we assume high enthalpy and sonic (choked) flow
conditions, constant across the muzzle opening. (The initial gas
velocity is, e.g., 1210 m/s). The variation of these conditions
at the exit plane with time are taken from one-dimensional interior
ballistics calculations [6]. Because the exit flow is sonic, such
calculations are independent of the intermediate ballistics events
and constitute the time dependent boundary condition at the muzzle
for the present calculations.

The projectile's acceleration during the intermediate
ballistics phase is computed from pressure forces in accordance
with Newton's law of motion. Viscous drag forces are neglected
because the working medium is assumed to be inviscid for the
present model.

A schematic of the computing mesh and initial conditions
is shown in Figure 1.

The governing equations for the gas are In cylindrical
coordinates are as follows:
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~ + a(rpu) + a(p\l)
;; 0a t a r a z

au + au + au + l~ ;;:; 0u va t a r a z p a r

a v + a v + av l~ 0u v + =at a r a z paz

(1)

(2)

(3)

a E
a t

a E a E
+ u + v +a r a z

1 f l
p r

(pru) + -lEv )}= 0 (4)
ar az

E is the s peci1ic total energy of the fluid, defined by
E = 1/2(u2 + \I ) + I where I is the specific internal energy.

Equations(1-4), the basis of our analysis, represent the
conservation of mass, momentum in the two co-ordinate directions,
and energy respectively. The Noble-Abel equation of state, valid
for most propellant reactions products, makes the above system
determinate. It is

RT 1P = I _ S Mi
p

(5)

where {j is the co-volume, for the calculation at hand having
3

a value of 0.001
m and Mi the mole of the with[Kg] , IS mass gas

R the universal gas constant. The temperature is calculated from:

T = (y-I)'I
R M

with M the molecular weight of the gas and I is the specific
internal energy.

B. The Boundary Conditions. The boundaries were
handled in the following manner: along the axis of symmetry, re­
flection was used, i.e. a row of imaginary cells was defined in
which all the quantities have the same values as in the last
row of cells in the flow field except for the normal component
of the velocity, the sign of which reversed in the imaginary cell.
The same technique was used along all the solid boundaries, that
is,along the muzzle walls, the projectile and the muzzle device.

Outflow along the free boundaries had to be guaranteed.
To prevent wave reflection, which was observed as the shock inter­
sected the last computational cell, a new method of handling the
free boundaries was introduced, see Figure 2. In essence, it in­
volves subtracting out mass in the last three cellS, ensuring that
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a negative pressure gradient exists there facilitating the out­
flow.

The conditions at the muzzle were specified by an
interior ballistics calculation [6]. For the first SO~s after the
projectile's ejection they were as follows:

u = 1210 - 1.340 x t

v = 0.000

p = (486.0 - 0.561 x t) x lOS

p = 40.95 - 0.092 x t

where t is specified in microseconds.

C. The Finite Difference Technique. The calculation
proceeds in two steps. The first step is pure Lagrangian in that
the convective terms are dropped from the equations of motions.
The pressure gradients are approximated by leapfrog differencing
with the pressure of the cell boundary being an average of the
two neighboring cells in each co-ordinate direction. The result
of the first step is a set of intermediate quantities, no physical
significance being abscribed to their values. It should be noted
that in the energy equation, the velocities used are averages of
the initial and the intermediate values so that in fact I., the
intermediate energy of the flow at location j, uses a different
velocity base than the momentum equation. Although this makes
the scheme in a sense inconsistent, the original developers of the
algorithm [7] claimed that this procedure was necessary to ensure
energy conservation.

Phase two of the algorithm updates the flow quantltles
to the final time by taking account of the transport terms neglected
in phase one. The continuity equation uses donor cell differenc­
ing, i.e. the mass flow across the side of a cell is calculated
by taking the density of the donor cell and the velocity is a
weighted average of the velocity of the material flowing from the
donor and the recipient cell. This velocity is obtained by a
Taylor series expansion about the cell boundary. Analogous pro­
cedures are followed for the momentum and the energy equations.
The time step was determined by the usual CFL, region of influence
criterion with a factor 0.25, i.e.

~t < 0.25 min(~r,~z)

a+~2+v2

where a is the local sound speed. The calculations were carried
out on a non-uniform mesh with 150 cells in the axial direction and 60
cells in the radial direction. Computational experience showed
that cells could not have an aspect ratio, LID greater than 1.5
and maintain stability, and in addition, cells had to be closely
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spaced near the plane of muzzle, otherwise wild oscillations
were observed. In the axial direction then, the first three
cells, containing high pressure gases were spaced at 5.0 x 10-4[m]
It was at this distance that the base of the projectile was
put at time t=O. Dowstream from tha~ location. the cell size
was gradually increased to 1.0 x 10- [m], then maintained constant
further downstream.

Typical time steps, which of course are a function
of mesh spacing, were around: 10-7 sec . Running times for 35~sec
real time were of the order of 4 hours on BRLSC II.

III. Results and Discussion. The code employed in these
calculations is a revised version of DORF[8], modified to in­
clude moving boundaries [9]. Considerable improvement of [9]
was necessary, however, before acceptable results were obtained.

Figure 3 and 4 show pressure contours of the flow field
at early times. The isobars, proceeding from the outermost
inward, are set at 0.1215, 0.2, 0.4, 0.8, 1.0, 5.0, 10.0,
20.0, 50.0 [MPa] respectively. A shock is indicated where
these are closely spaced, all around the periphery of the gas
cloud. Due to the inherent diffusion of the finite difference
technique, the shock is smeared, being 0.003 [m] in thickness.
At t = lS.4lJ,.lsec. (Figure 4) the interaction with the muzzle
device is clearly evident as well as the gas motion around
the tip of the projectile. The pressure at the shock front
is typically 6 atmospheres. The next graph, Figure 5, shows
the pressure along the stagnation streamline (i.e. axis of the
barrel) for cycles 100, 200, 300 corresponding to real times
of 5.50, 10~58, 14.41 [~sec]. At cycle 100 the pressure drops
from 4 x 10 1 [Pal at the nozzle to around 9.0 x 106[Pa] toward
the base of the projectile. A slight rise at the base of the
projectile indicates the presence of a backward facing shock.
This shock comes about because the gases are still moving faster
than the projectile, the base of which appears like a blunt
body to the flow. The projectile pushes against the ambient
at its tip producing the lump in the gas pressure there corres­
ponding to a bow shock. At succeeding cycles the results are
qualitatively analogous, with the pressure continuously dropping
at the base of the projectile due to the lateral expansion of
the gas. Figure 6 shows the radial pressure profile in a plane
at O.OOlS[m] in front of the muzzle at t=IS.4lJ,.lsec proceeding
in the radial direction. The profile shows the expected steep
pressure drop in the directi~n away from the muzzle, followed
by a rise to around 5.0 x 10 [Pal at the blast wave.

In Figure 7 we have plotted the radial temperature pro­
file at t = 34. 29J,.lsec. in the plane 1.5 mm in front of the
muzzle. The interesting point here is the temperature rise,

403



at a distance of 34 x IO-3[m] from the aXIS of symmetry,
indicating the presence of the shock.

The next figure, Figure 8, shows the axial velocity
along the axis of symmetry at three different times. The gas
velocity increases downstream from the muzzle as the gases
expand, reaching a value of slightly in excess of 2500[m/s]
before steeply dropping at the base of the projectile. Near
the nose of the Pl'oj ectile, one can observe a steep drop to
zero, the gases having been only slightly affected by the mo­
tion of the projectile at these early times.

A number of checks were made on the results described.
:hese consisted of Rankie-Hugoniot conditions in the normal
and radial directions to see if the conservation laws were
obtained. Deviations of up to 25% were observed, but in view
of the fact that the RH conditions pertain to steady flow,
while here we one dealing with an unsteady situation, the agree­
ment was judged to be satisfactory.

The shock stand-off distance on the base of the projectile
was also calculated. Using the correlation of reference [10],

1. 03

.A~l p 00 ->.

(6)

where 8 is the stand-off distance, R the characteristic dimension
and Poo the density of the gas ahead of the shoc~ agreement
within 10% of that predicted by formula (6) was found.

Finally, the calculated pressure was checked against
experimental values. Measurements are considered to he unreliable
due to the hostile environment of the flow field and the fact that
the insertion of a probe into the flow field will alter its
structure. Figure 9 shows the correlation between theory and
experiment.

In conclusion then, we have presented the results of
the simulation of the flow field, for early times at the muzzle
of a small caliber weapon. The numerical results are in
satisfactory agreement with our qualitative understanding of
the flow.
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GENERALIZED SHOCK WAVE PHYSICS:

ELECTROMAGNETIC AND SECOND SOUND SHOCKS

Paul Harris
Concepts and Effectiveness Division

Nuclear Development and Engineering Directorate
Picatinny Arsenal

Dover, New Jersey 07801

ABSTRACT The steady shock velocities for finite amplitude electro­
magentic and second sound disturbances are derived. A generalized form
for the shock velocity of an arbitrary disturbance, in terms of "jump"
conditions in stimulus and response parameters, is suggested. That
generalized form is compared with the derived shock velocities, and with
the shock velocity for a finite amplitude mass density disturbance.

I. INTRODUCTION

A steady state finite amplitude compressional mass density disturbance
is characterized by a shock velocity, U , given by

u = /PJPj'
Pf{p}

where P dentoes prest:;ure, P is mass density, the subscripts i and f de­
note initial (unshocked) and final states respectively, and the curly
brackets indicate that the quantity is to be evaluated across the shock
front (surface).

{p} - P
f

- Pi

The form of Eq. (1) has been known for more than a century1.

In sections II and III we will derive expressions for the shock
velocity associated with finite amplitude electromagnetic and second
sound disturbances. Those expressions will be seen to be of a form
similar to Eq. (~), and lead us to suggest that a generalized finite
amplitude disturbance propag~tes at a shock velocity given by

(2) U =
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where A. denotes the variable assoicated with the applied i th stimulus,
B. the ~ariable characterizing the corresponding response, and ~ is a
q~antity assoicated with dimensionality.

II. ELECTROMAGNETIC SHOCK WAVES

Let us consider the two time-varying Maxwell's equations for elec­
tromagnetic field propagation in a medium.

+
I riD

+ --
Co at

-+-
1 aB--
Cn at

4n -+­
-J
C

o

-+--+­
'i7XH :=(3)

(4)

where gaussian units have been used, c is the velocity of light in vacu­
um, and the symbols have their usual m~aning2.

We restrict ourselves to spatial variation only in the x 1 (or z)
direction. This corresponds to the so called "one-dimensional" strain
configuration of mass density shock wave problems. Thus

dE
2

dB
I

dE
1

aB
21

-- -- and :::: ---
(5) dX3 at aX3 Co dt

dH
2 l~ 'IT I

aD
l

aR
l 4'IT

J
1 dD 2

(6) := -J +--- and := +--
:Jx

3
c 1 c dt dX

3
C 2 c at

0 0 0 0

a "" U_d_
The steady shock can be described by employing at dX

3in Eqs. (5) and (6). The second of Eqs. (5) and the first of Eqs. (6)
then give

(7) dE := _ :Y...- dB
1 c 2

0

4n + :Y...- dD(8) - dH2
:::: -;- J 1dX3 C 1

0 0

where dependence on only a single independent variable allows total
differentials to be used.

Integrating Eqs. (7) and (8) across the shock front, which may be
of finite thickness, an(l solving for U, gives

(9) U ::::
{E

l
}[{R2} + 4'TTC~1 f

Sh
J1dx

3
]

{D
l

}{B
2

}

416



(helium II), and
Finite amplitude
has been obser­
the velocity of

For the special case J l = 0, Eq. (9) is the form of Eq. (2);
El and H2 are identified as stimuli, and Dl and BZ the corresponding
response variables. The integral in Eq. (9) is to be taken across
the shock front. Physically, J l enters as it does because a surrounding
magnetic field is always associated with a current. Eq. (9) is well
known. Indeed, it is the basis for important effects in pulse shaping
and transmission line technology3.

The existence of a shock wave is generally associated with non­
linear material properties. Although we have not explicitely exhibited
such nonlinearities in arriving at Eq. (9), they are in principal
present. For example, Dl can have quadratic dependence on El , and/or
field dependent breakdown can contribute to J l •

In actual practice the existence of nonlinear material properties
is a necessary but not a sufficient condition for the existence of a
shock wave. In order for an electromagnetic shock to exist, it is
necessary that the nonlinearity be such that U increases as the magni­
tude of El and/or H

2
increases. Suffice it to say that systems do exist

which have nonlinearities of the type necessary for the formation of
electromagnetic shock waves3 .

Regardless of whether or not the shock condition exists, Eq. (9)
gives the velocity of that finite amplitude disturbance being propagated.
As it must, Eq. (9) yields U = Co for propagation in a vacuum.

III. SECOND SOUND SHOCK WAVES

Second sound is typically a low temperature phenomenon. It is de­
fined as the coherent propagation of a thermal disturbance. In pure
second sound there is no associated mass density (or pressure) disturbance.
The more everyday (say room temperature) mode of thermal propagation is
via incoherent diffusive processes; second sound conditions are achieved
when the frequency content of the thermal disturbance is of the order
of the reciprocal of the thermal relaxation time for the system in
question4 ,5.

Second sound was first observed 6 in liquid helium
has since been observed in non-superfluid materials7 .
second sound can give rise to second sound shock which
ved8 ,9 in liquid helium. In this paper we will derive
a steady second sound shock in liquid helium.

Within the context of the two fluid model for superfluidity the
equations9 for the conservation of mass, the conservation of momentum,
and the conservation of entropy, become

(10) !e.. +
dt

L(p v + p v )
dZ S S n n
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2Jv Pn ap aT(lla) n
Pn a:t = -- Ps S

dZP dZ

2Jv Ps 2JP aT(llb) s
Ps = -- + Ps

s
at P az az

(12) a a
at'(ps) + a(psv ) = 0z n·

In Eqs. (1) - (12) the physical parameter s denotes specific entropy,
T is temperature, v is the particle (flow) velicity, and the subscripts
sand n refer to the superf1uid and normal components respectively.

Ps and Pn are constrained by P -- Ps + Pn ' and only the normal com-
ponent is a carrier of entropy. Second sound gives the additional con­
straint

(13) dP = dp = o.

As in the electromagnetic case we employ
Thus from Eq. (lla)

a
at = u L

az

(14) Udv
n

1:. dF
p [ :: ) sdT

Integrating Eq. (14)

(15) V
n

with rIP '" a gives

= - 1. J [ ~ JSdT
U shock Pn

Substituting the steady state shock condition into Eq. (12) gives

(l6a) + d(psv)
n = 0 or

(16b) Uds· + v ds + sdv = 0
n n

Combining Eqs. (14), (15), and (16b) yields

(17) [ U - €I Lh (:: )sdT ] ds = ~2 (

with the final result

(18)

U =
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While use of Eq. (18) is limited iYothat Eqs. (11) represent only
the linearized version of superfluidity ,it is important to realize
that the same procedure utilized here is applicable to the nonlinear
case; the result would be a more complicated version of Eq. (18).

To begin comparing Eqs. (2) and (18) we neglect the inner integral
in the denominator if Eq. (18), and we average the integrand in the num­
erator. The result should apply to finite though small amplitude shocks
and is given by

(19) u '"

-1 2)
Upon identification ~ = (psP n S avg we have the desired form

of Eq. (2). T is recognized as the stimulus, s the response, and second
sound is to be viewed as the propagation of a coherent entropy disturbance.

reduces to

=(20)

In the ~imit of an infinitesimal disturbance Eq. (19)
the accepted expression for second sound velocity, U1 ,

lm,

Ps s2T
= ---

Pn cp

where cp is the specific heat at constant pressure.

The next degree of analysis of Eq. (18) is to consider the integral
in the numerator. This represents a situation similar to the integral
over the current density in Eq. (9), and is present because ¢ is a
strong function of the stimulus T. Physics and dimensional analysis
would presumably have allowed one to use Eq. (2) in order to guess at
the form of the numerator in Eq. (18). The form of the inner integral
in the denominator of Eq. (18) is somewhat less obvious.

Again not all nonlineatities are sufficient to cause a positive
(6 T) disturbance to shock up. The existence of such a shock depends
upon the detailed behavior of (p p-1s2) as a function of T.

s n

By using the pure second sound conditions of Eq. (13), we have ne­
glected the higher order physics associated with thermal expansion and
the GrJneisen parameter. The usual literaturell derivation of the
second sound shock velocity is perturbative (second order in (:, T) and
includes the mentioned higher order effects. The form of the second
sound shock velocity thus arrived at is

(21) u = S(v + v )
s n

419



The higher order effects can be included in the approach leading to
Eq. (18) by retaining the terms in do and dP. It is interesting to
note that Eq. (19) can be placed in a form similar to Eq. (21). al­
though without the corresponding physical content. by using

(22)

IV. DISCUSSION

{} _aT {s} 1 a2T { 2}
T . = dS + 2857 s

We have shown that an intelligent use of Eq. (2) is a good starting
point for guessing at the shock velocity of an arbitrary disturbance in
a complicated system. If we could not have guessed at the denominator
of Eq. (18). we could certainly have written an empirical form for{B}
of Eq. (2) which might have suggested the correct solution.

Among the more esoteric nonlinear systems to w2ich one might wish
to apply Eq. (2) are those of quantum field theoryl (propagation of a
probability amplitude). and magnetohydrodynamic (MHD) shocks in gases l3

and solids14 . A propagating distrubance in a nonlinear medium can. in
general. give rise to shock formation. and its study may be of interest
for a wide variety of physical. biological or social systems.
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ON RIEMANN'S INVARIANT AND SHOCK IMPEDANCE OF SOLIDS

Y. K. Huang
Benet Weapons Laboratory

Watervliet Arsenal
Watervliet, New York 12189

ABSTRACT. Using the Riemann invariant and Rankine-Hugoniot
jump conditions, analysis is made to show the basic difference
and interrelationship between acoustic and shock impedances of
solids. The investigation also arrives at a new formulation for
the general equation of shock and particle velocities in both
binomial and polynomial forms. The nonlinear binomial should
be of special interest to those who used to work on shock waves
in solids.

1. INTRODUCTION. The Riemann invariant is well known in
connection with the hyperbolic-type partial differential equations
and with the transient analysis of nonlinear waves or supersonic
flows. Thus. the method of characteristics can aid considerably
the investigation of such relevant problems as shot propulsion
or gun firing (internal ballistics), muzzle and recoilless-rifle
blasts (transition or intermediate ballistics). and hypervelocity
impact on armor (terminal ballistics). This paper is concerned
with a basic analysis regarding the terminal ballistic effects
in solids. For a given compression of solids. we can put its
isentrope and shock adiabat in one~to-one correspondence by using
the Mie-Gruneisen equation of state in coupled form. Such con­
sideration turns out to yield a number of useful results and inter­
relationships between the acoustic and shock-wave properties of
solids 1 ,2. From yet another point of view we can determine a
sound wave'which corresponds to a shock wave with the same amount
of compression. This calls for a transformation from the pv-plane
to the pu-plane. Now each wave is associated with an impedance of
its own just as it has its own pressure amplitude. Somesresults
from this approach have been discussed in a recent paper, and
further results are given in this paper for the higher-order effects
and interrelationship between the two impedances. It may be noted
that the Gruneisen parameter provides an interlink in the pV-Plane~
and that the Riemann invariant is the similar tool in the pu-plane .
From Riemann's invariant we can deduce the acoustic impedance and
its higher-order effects. Likewise, we can evaluate the shock
impedance using Hugoniot's momentum equation. Interrelations
between the two impedances are best demonstrated by consideration
of a third-order representation, which turns out to yield the gen·
eralized relation between the shock and particle velocities as has
been used without proof in Reference 1. Now a complete derivation
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(15 I )

(16 I )

(19 )

{d3Ps/dU3)o = {d3PH/du3)o + 1/2(dPH/dU)Ol (d2PH/du2)O x

[1/2(d 2PH/ dU2)O - GoJ (17')

Thus, the isentrope coincides initially with the shock adiabat
in both pv- and pu-plane. The two adiabatic curves separate
from each other on the third order as described by Eqs. (17)
and (17'). These interrelations are very useful in this
investigation. The following are all straightforward
deduction.

From Eqs. (1 )-(3), we may write
I I' 2Z • Z + Z U + 1/2Z u +. I •o 0 0

= (dPs/dU)o+(d2Ps/du2)ou + 1/2(d3ps /du 3)ou 2 + '"

It is interesting to note

Vo Q (dPH/du)o • (dPs/du)o • Zo (21)

Y~ • 1/2(d 2PH/du 2)o g 1/2(d 2Ps/du 2)o ~ 1/2Z~ (22)

y~1 • 1/3(d3pH/du3)o = 1/3{(d3Ps/du3)o-1/2(dPs/dU)~1

(d2Ps/du2)o x Cl/2(d2Ps/du2)o-GoJ} •
, , , ,

1/3 [Zo ... 1/2Zo,1/2Zo - Ga)/Zo] (23)

by use of Eq5. (1) .. (4). (15') .. '17'), (19). and (20). Substituting
Eqs. (21) ... (23) and (19) in Eq. (20). we get
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Y ~ Z - 1/2[ZO'u+(2/3Zo
'l + _1 Z-l Z' 2 - ~ G Z-lZ' )u 2] (24)

12 0 0 6 0 0 0

which provides an interlink between the two compression impe­
dances. Clearly, Eq. (24) is accurate to the third order of
the adiabats. It is of particular interest to note that Eq.
(24) is essentially the same as

U ~ ao + 1/2Z~vou + 1/6[Z~' + 1/2Z~(Go - 1/2Z~)/Zo]vou2

= ao + a1u - a2u2 (25)

with Uo = ao (or Yo = Zo)' We shall consider Eq. (25) furthere
in detail shortly.

3. WEAK NONLINEARITY. Thus far, we have expressed the
impedances in polynomials. See Eqs. (19) and (2g). It is
still more illuminating to use the compact form:

Z = Zo(1 + Ps/B}N/2 (26)

with constants

(27)

(28)

I I I I

Here Ko ' Ko and K are the initial values of K = -vdPs/dv, K =
dK/dps and K" = ~2K/dp~ at Ps = 0, respectively. From Eqs. (1)
and (25)-(28), we get

a = v Z = (v K )1/2 (29)
00000

I l I I

a2 = (-vo/6)[Zo + 1/2Zo (Go-l/2Zo)/Zo] = (-vo/6) x

[1/2(N/B)2 x (l-N-l)Z~ + (NZo/4B)(Go-NZ~/4B)]
1 -1/2 1 I I II

= IT (voKe ) [8 (Ke ~ 1)(Ko-4Yo-7)-KoKo]'
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Now Eq. (31) may be rearranged as
I ,

-KoKo == 2al(Yo-al+2) + 12aoa2 (32)

which verifies the explicit results of Reference 1 using the
Slater and Dugdale-MacDonald formulas. Here Eqs. (29)-(31)
complete the formulation oflEq. (25) which was used without
proof in our earlier paper. It should be noted that the
parabolic Eq. (25) may become useless well before it yields
U<u. For this reason and by analogy with Eq. (26), let us
consider the nonlinear binomial:

U =

w =

n =

with O<n<l.
'"

(34)

(35)

(33)UoO + u/w)n

From Eqs. (25), (29)-(31), and (33), we get

af/(a~ + 2a oa2)

= 3/4 (K~+1 )2/ [ (K~+1) ( K~ -Yo -1 ) - 2KoK~ I ]

aoal/(a~ + 2a oa2)

= 3(K~ + 1)(VoKo)1/2/[(K~+l)(K~-Yo-l)-2KoK~'].

Now Eq. (33) is not only in closed form, but it is more general
and more accurate than Eq. (25) provided that adequate data have
been fitted in Eqs. (34) and (35) to determine nand w. Thus,
for a2 = al = 0 we get n = 0 and U = Uo = ao (the acoustic
approximatlon of very weak shocks). For a 2 = 0 only, we get
n = 1, w = ao/al' and U = ao + alu (the widely-used, linear
binomial). Elsewhere 4 we have shown this exactly by putting
N = 1 in Eq. (26). Clearly, Eq. (33) can be expanded to
yield the truncated form of Eq. (25) and

PH(£) = £ao2v~1 [(1~al£)2 + 2aOa2£2]-1 (36)

as given in Reference 1 with £ = 1 - vivo = u/U. If we combine
Eqs. (4) and (33) with £, we can determine a nonlinear adiabat
PH = PH(£) which should be more accurate than the truncated
form of Eq. (36).

4. CONCLUSION. In this investigation we consider the
essential behavior and properties of shock waves in solids from
a semi-analytical approach. Our new formulation of the velocity
relation is not only simple in expression but also general,
including such special cases as the binomial (linear) and
polynomial (parabolic) forms which are being used widely in
the literature.
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FREQUENCY DEPENDENT WAVE ARRIVAL TIME DELAYS IN
DISPERSIVE AND NONDISPERSIVE MEDIA

J. R. Stabler, E. A. Baylot, and D. H. Cress
Mobility and Environmental Systems Laboratory

U. s. Army Engineer Waterways Experiment Station
Vicksburg, Mississippi 39180

ABSTRACI. This paper presents the results of the application
of a technique for estimating seismic wave arrival time delays in dispersive
media. The technique addresses the physical situation consisting of
two spatially separated sensors (seismic) implanted in a dispersive
media for which the frequency-dependent time delays between the respective
signatures are desired. The time delay at a given frequency is expressed
in terms of the distance between the sensors and the frequency-dependent
velocity of propagation. Initially, the phase differences between
the two signatures are estimated. The acr.uracy of the estimated phase
difference at each frequency is then associated with the coherence
estimate. Phase differences for which the magnitude of the coherence
is sufficiently large are used to estimate the time delays. Results
of application of the technique are presented, and problem areas are
discussed.

1. INTRODUCTION. Time delays between two measurements of wave
motion in dispersive and nondispersive media play an important role
in several fields of endeavor. Generally, time delays between two
(or more) signatures are desired when the signatures are obtained from
spatially separated sensors receiving energy from a common source as
illustrated in Figure 1. Such physical situations may occur in such
fields as oceanography (i.e. measured time delays between signatures
of wave motion at two locations are used either to predict wave motion
at a given location given the measured signature at another or to establish
the degree of correlation between events at the two locations), seis­
mology (i.e. measured time delays are inserted into bearing location
algorithms to locate earth tremors and explosions), or acoustics (i.e.
based upon measured time delays, velocities of propagation of energy
through various media are determined).

The purpose of this paper is to review the conventional approach
for making frequency dependent estimates of time delays* using the fast
Fourier transform (FFT),** to illustrate the results of application of
that approach to particular types of signatures (seismic signatures of
military vehicles), to point out its limitations and to discuss a method
for avoiding some of those limitations.

* R. K. Otnes and L. Enochson, Digital Time Series Analysis, John Wiley,
New York, 1972.

** J. W. Cooley and J. W. Tukey, "An Algorithm for the Machine Calcula­
tion of Complex Fourier Series," Mathematics of Computation, Vol 19,
1965, p 297.
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2. THEORETICAL CONSIDERATIONS. The physical situation addressed
in this analysis consists of two sensors spatially separated by some
medium (dispersive or nondispersive). If the energy source is at a
sufficient distance from the two sensors, the incoming waves can be
described by plane wave fronts (Figure 1). The line between these
sensors is chosen to define the z axis. The energy is assumed to be
propagating in the positive z direction (away from the source). The
particle displacement for the selected mode of propagation is assumed to
be in one direction, although that direction is arbitrary (i.e. depending
upon whether or not the vibration is compressional, transverse, etc.).*
The assumption of a single mode of propagation is employed to avoid the
ambiguity that may occur in estimating time delays when several vibra­
tional modes having different propagational velocities are present,
hence leading to different time delays for each mode of vibration.

For a particular point along the z axis, and for a particular
frequency, the displacement of particles can be described by the con­
ventional expression

x(z,t) = A exp j(2nft - kZ)

where

x = displacement
t = time
A = amplitude
f = frequency
k = wave number = In/wavelength

In practice it is generally the rate of change of x with respect to
time that is measured, or

~(z,t) = 2nfA exp j(2nft - kz + I)
If we consider the effective change in
sensor 1 at z = a and sensor 2 at z =
sensors becomes

x at these two sensore (i.e.
d), the wave form of these two

~l(O,t) = 2nfA exp j(2nft + f)
~2(d,t) = 2nfA exp j(2~ft - kd + ~).

The difference between the above wave forms is due to a phase difference
~ = -kd.

The wave number k can be expressed in terms of the velocity ot
propagation v and the frequency as k = 2nf/v. Therefore,

* Actually, the assumption ot motion along a single direction can be
relaxed to include motion having only one independent variable such as
for Rayleigh waves where the motions in orthogonal directions are depen­
dent on one another.
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The time delay between signatures received at the sensors is the quantity
d/v and is therefore given by

t = 2 'lTf

In the actual physical situations, the energy is spread over bands
encompassing a broad range of frequencies. When a broad region of fre­
quencies is present in the signatures, a plot of phase difference versus
frequency can be generated. For nondispersive media the velocity is
constant so that the phase shift increases linearly with frequency as
indicated in Figure 2a. For dispersive media the phase shift may become
a complex function of frequency as indicated in Figure Lb. The time
delay between two signatures is directly related to the phase difference ¢
as indicated in equation 1. Therefore, emphasis in the remainder of
this paper is upon determination of ¢ , since it is the phase shift
that is directly obtainable from the conventional frequency-by-frequency
comparison of two signatures.

With the advent of the fast Fourier transform (FFT), the complete
spectrum can be computed in reasonable computational time. It is now
practical to compute the phase difference for each discrete frequency
band resolved in the frequency domain. The conventional approach consists
of the following steps:

a. The time domain signature~ received
y , shall be denoted by x~t) and
domain representation of x(t) and
application of the discrete Fourier

n-1
.-.J

.6.t L (-j27Tfkm.6.t)X
k

= x exp
m"'Q m

n-l
".". I (-j 2'JTfkm.6.t)Y

k
= 6t Ym

exp
m=Q

at two sensors, x and
Y~t). The frequency
yet) is obtained by

transform to obtain

where 6t is the sampling period, x and y ar~._., m m
x(mllt) and y(m6t) , respectively, and ~ andYk are

complex variables with real and imaginary parts. The real
part of Xk (or y~) denotes that part of xtt) [or yet)]
that can be assoc1ated with the cosine terms in Fourier
expansion while the imaginary part can be associated with
the sine terms in the Fourier expansion. The "tildes"
over 'X

k
and 'Y

k
indicate that Xk and'Y~ are "raw"
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b.

estimates of the frequency domain signatures without any
averaging over adjacent frequency values or sequential
time estimates.

The cr~ss-spect~al density estimate, Gxyk ' is obtained
from ~ and Y

k
using the defining expression

,J ,J;AJ
G :: X~ Yxyk -Ok k

where the asterisk denotes complex conjugate. The result­
ing expression for G k can be separated into real and
imagery parts in the f6rm

,.;
where C k is referred to as the cospectrum estimate
~ k isXfhe quadrature spectrum estimate. The powerxy
spectrum, or autospectrum, is estimated for both x(t)
and yet) from the expression

G "" x* X.xk k-"K

and

and

G
Yk

:: Y~ Yk •

c. The raw cross-spectral estimates can be smoothed over M
adjacent estimates using the expressions

M
G =! L G

xk M j=l x(k + j)

M
G =1 L G

yk M j=l y(k + j)
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The value of M selected for the smoothing is dependent
upon the physical properties of the medium through which
the energy propagates, the desired accuracy of the esti­
mates, and the desired frequency resolution. As the value
of M is increased, the bandwidth of the resolved fre­
quencies is increased, and the accuracy of the estimates
are improved. However, the bandwidth of the resolved
frequencies is restricted by the degree of dispersion
(i.e. the dependence of velocity on frequency). This is
because improvement in the accuracy of estimates with
increased values of M is dependent upon the assumption
that the velocity of propagation of energy is reasonably
constant in the bandwidth of resolution of frequencies.
Therefore, M is restricted to values for which this
assumption is true.

d. The phase difference, ~ k' between time series x(t)
and yet) is estimatedXfrom the expression

~xyk arc tan (Q k!C k) .xy xy

An additional parameter having useful properties for the
application of the computational technique to time-delay
estimates,* or equivalently, estimates of phase differ­
ence, is the squared coherence, y2 • This parameter is
defined in terms of the cross spe~rum G (f) and the
autospectra G (f) and G (f) as xy

x y

IG (01
2

l (f) '" -G-(~~~}-G---"'(f""')-
xy x Y

The coherence estimate can be expressed in terms of the
previously obtained estimates of power and cross spectra
as

c2 + Q2
xyk ?cy'k
"
G Gxk yk

3. APPLICATION. Application of the conventional approach des­
cribed previously for computation of the phase difference between two
signatures may produce inconsistent results. For example, the calculated

* B. V. Hammon and E. J. Hannan, "Spectral Estimations of Time Delays
for Dispersive and Non-Dispersive Systems," Journal of Applied
Statistics, Vol 23, 1974, pp 134-142.
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phase difference between two signatures can be so irratic in some frequency
bands that it is impossible to identify which estimates, if any, are
reliable. A~ discussed by B. V. Hammon and E. J. Hannan,* the coherence
parameter (Y ) can be directly related to the accuracy of the cross­
spectral estt~ate (hence phase difference) at a particular frequency.
Because the accuracy of the phase-difference estiffiate improves rapidly
as the coherence increases toward unity. the coherence parameter can be
used to determine what frequencies can be used to provide the best
estimates of phase difference. Results of applying the conventional
approach to phase-difference estimates, ignoring coherence, are presented
below. Problem areas are identified. The coherence parameter is then
included in the analysis and the resulting contribution of coherence to
identifying reliable phase difference estimates is discussed.

Application excluding coherence. The first calculation of phase
~ifference considered is the result of analysis of seismic signatures of
an Ml13 APe (armored personnel carrier) collected with two geophones
spaced 6 m apart. The phase plot (Figure 3a) suggests that there is a
continuous functional dependence between the frequency and phase difference
in the approximate frequency bands 5-25 Hz and 50-210 Hz. However,
scattering in the phase-difference estimates is clearly evident between
25-50 Hz and at frequencies greater than 210 Hz with some scattering in
all band~. Observation of the power spectrum (Figure 3b) shows that
power is, on the average, somewhat larger in the 50-210 Hz band than in
~,~ 25-50 Hz and 210-250 Hz bands and considerably larger in the 0-25 Hz
region. It can be postulated that the contributions of random noise in
the instrumentation and background seismic noise combine to mask the
contributions of the signature of the Mll3 APe in low-energy spectral
regions. The resulting estimate of phase difference in the "lower
energy" bands appear to be random.

Often it is desirable for the investigator to determine phase
differences from two or more energy sources simultaneously. Such is
Lllustrated in Figure 4; two seismic sources are present, and MISI jeep
and an M35 truck. An ambiguity then arises as to what the "correct"
time delay is. For instance, the effective distances between the geo­
phones for each of the two sources are different so that the resulting
time delays in the reception of the respective energy contributions of
the two sources are different. This ambiguity results in scattering of
the estimates of phase difference in the frequency regions where the
energy from the respective sources overlap. Estimates of phase difference
for the physical situation illustrated in Figure 4 are presented in
Figure Sa. The estimates are noticeably scattered. Inspection of the
power spectrum (Figure 5b) shows that the energy is again primarily
concentrated below 25 Hz. However, several strong lines appear in the
spectrum (for example at approximately 80, 90, and 170 Hz) suggesting
that, at least in these narrow frequency bands, one source could be
dominating over another (i.e., it would be unlikely that the two sources

*Ibid. , p 5.
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would generate peaks of energy in ~he same narrow frequency bands). It
should be possible to identify reliable phase-difference estimates
(hence time delays) for these narrow frequency bands. However, reliable
estimates may exist in bands not readily identifiable in the power
spectrum.

Application including coherence. In view of the difficulties
encountered in estimating phase differences between signatures generated
by multiple sources or containing random noise, some criterion is desirable
for selecting potentially accurate phase-difference estimates. As
discussed by Hammon and Hannan,* the coherence parameter provides an
estimate of the accuracy of the phase-difference estimates. The coherence
spectra for the two cases discussed previously are presented below and
the phase differences are discussed in view of the associated coherence
spectra.

The coherence spectrum for the single energy source (Ml13 APC) is
presented in Figure 6a. The average value of the coherence is relatively
low in the frequency region between 25 and 50 Hz and for frequencies
greater than 210 Hz. There are large variations in the coherence in the
50-210 Hz region. If the phase difference is plotted only for values of
coherence greater than 0.5, only the phase difference appearing in
Figure 6b appears. Comparison of Figure 6b with the previous plot of
phase difference (Figure 3a) reveals that many estimates have been
eliminated, particularly those having no correlation to adjacent estimates.
The coherence criterion suppresses the random components of the estimates
of phase difference.

The coherence spectrum for the multiple ~nergy sources is pre­
sented in Figure 7a.. The coherence is generally lower than that of the
single-energy source. The phase difference is plotted for values of
coherence greater than 0.5 in Figure 7b. Comparison of Figure 7b with
Figure 5a reveals that the number of phase differences that satisfy the
coherence criterion is significantly less than the number of available
estimates. "Clusters" of three or four estimates satisfying the coherence
criterion occur at approximately 80, 90, and 180 Hz, corresponding to
lines in the power spectrum. However, other phase differences also
satisfy the criterion, indicating that inspection of the power spectrum
alone does not necessarily allow one to identify all of the reliable
estimates of phase differences.

Summary. Two sets of data have been analyzed to obtain the phase
difference between signatures for subsequent determination of time
delays. Random instrument noise and the interaction between the signa­
tures of multiple energy sources have been hypothesized as potential
causes for scattering of the estimates of phase differences. Those
estimates of phase difference useful for estimating time delays have
been identified by applying a criterion on coherence to the estimates of

phase difference. The coherence estimate is easily implemented in the
conventional approach to obtaining estimates of phase difference, since
the supporting parameters (i.e. ~' Yk ' G k' etc.) must be calculated
in order to obtain the phase difference. xy

*Ibid., P 5.
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ABSTRACT. A new relaxation method is formulated by substituting
artificial time dependence for true time dependence in the Euler equa­
tions of fluid mechanics. The prDviously hyperbolic equations ere
thereby converted into parabolic form, and the convergence question is
studied analytically within the vehicle of linearized small disturbance
theory. The fully nonlinear equations are solved numerically using this
new relaxation technique for the case of a NACA 0012 airfoil at 2

0 angle
of attack. The method is seen to work quite well and warrants further
extension into the transonic range.

1. INTRODUCTION. The problem of determining the flow field P&st
an arbitrary, t\;o-diTIiensionnl body it:'mcrsed in an unbounded compressit,le
gas has been the subject of countless investigations over the last half­
century. Most of these analytical methods gave reasonable results until
the free stre.am Hach number increased to the point that a finite super­
sonic zone usually terminated by a shock Hilve appeared on the hody. This
transonic flow regime has only during the last few years yic12ed to the
attempts of many researchers to develop solution tcchniq 11es gpoeral
enough to be utilized as design tools. These successful techniques are
primarily numerical relaxation methods applied to the entire flm.; field
equations.

In the current work described here, the fully nonlinear equation
is solved utilizing transformation tQchnique for handling tounclary con­
ditions. Hc\,'e'Jel~, the rel2.xaticn process itself is quite novel :1nd the
physical motivation des2ribed in deriving the relaxation method pre­
sented l;ere makes it quite 'possible to devise a relaxation nroceas which
converges t:uch fclster than any technique currently being l:sc:c. In tte
sections to follow, the derivation of the :celn:2.Lion mC"thod ·:~:U.l be
presented foilo~sd by a discus~ion of the question of convcr~~nC2. The
application of this tec~nique to subscnic flow is pres0:~ted in S2ctions
4 and 5, and results are discussed in Section 6.
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2. MOTIVATION AND DERIVATION OF METHOD. The selection of any
particular iterative method of successive approximation for finding
the solution of a set of nonlinear, algebraic equations is determined
firstly, by the conditions for convergence of the method and secondly,
by the speed wi.th which the method converges. The concept of utilizing
the fully unsteady equations of motion to obtain steady-state flow
fields is particularly intriguing from the point of view of a relaxa­
tion scheme selection since one can argue from physical experiments
that initially unsteady transonic flow fields with steady boundary
conditions do indeed settle down to steady-state conditions. Hence
a relaxation process which faithfully describes this true transient
behavior should always converge to the desired steady-state 'solutions.
The equations to be solved are of hyperbolic type and hence the flow
pattern at any finite instant of time is composed of a complex pattern
of rarefaction and compression waves. The numerical description of
this complex process together with the boundary conditions, even though
guaranteed to converge if the difference scheme is stable, requires
an enormous amount of real computer time, i.e., the speed of convergence
is slow.

To obtain a relaxation process which converges more rapidly, perhaps
some other artificial time behavior should be utilized rather than the
true time behavior of the hyperbolic Euler equations for unsteady flow.
The motivation for this concept is that hyperbolic systems approach
their asymptotic steady states through a series of expansions and com­
pressions, i.e., through a wave system. Now if one substitutes for
this true time behavior, an artificial time behavior which yields a
parabolic set of equations, then the resulting solution should settle
down to its asymptotic steady state through a process of diffusion. The
attempt here is to draw an analogy between heat diffusion processes
which are governed by parabolic type equations and the unsteady fluid
flow equations which have been manipulated, albeit artificially, to be
parabolic equations. Carrying the analogy further, since heat diffusion
processes have been observed to reach their aSy~ptotic steady state
rather quickly, exponentially fast in some cases, it then night be ex­
pected that the fluid flow should also approach its steady state more
quickly through an artificial time-dependent process which is of para­
bolic character. That is to say, a hyperbolic or wave-type set of
equations has been traded for a parabolic or diffusion-type set of
equations. It must be remembered, however, that the quantity called
time in the parabolic equations can no longer be interpreted as a
physically meaningful quantity but takes on the interpretation of an
artificial parameter which gauges the nearness to an asymptotic steady­
state solution. The desired solution is obtained when dependent flow
variables no longer depend on this artificial parameter. At this point,
it is reasonable to ask if these parabolic equations converge to some
steady-state solution and if the solution so obtained is the correct
one. This question will be discussed in Section 3. To specifically
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define this new relaxation concept, let p c density, q ~ velocity
vector, p = pressure, Q ~ heat per unit mass and time, i = enthalpy,
Regas constant. Then the governing equations for unsteady flow of
an inviscid perfect gas past an obstacle are

(1)

(2) 0'1 + (q.V) q -=ot

o

1
p-Vp

(3)

(4) P = p RT •

The boundary conditions for an obstacle immersed in an unbounded fluid
are

(5)

where q is the velocity normal to body surface and q is the velocity
vector ~t infinity. In addition, for flows with circ~lation, the Kutta
condition,

qr.E. ~ 0,

where qT E is the velocity at the trailing edge, must be satisfied. For
free-stream Mach number ranging up to transonic values, the flow field can
be assumed to be both isentropic and irrotational at least to second order
since shock waves, if present, are weak and therefore produce entropy
jumps of third order. Eq. (3) is consequently replaced by

(6) L-
p"Y -

Now defining
h c i + q2/2
pectively,

CONSTANT

i O :;: stagnation enthalpy, a = free~stream speed of sound,
co

- iO' the conservation of momentum and mass becomes, res-
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(7)

(8)
~2

ot
~ ~ - (-r -l)~·q) h = a~v·q - (q.~) qj2

_ Ci';1) (q2 _q~)(V.q)

The expression on the left side of Eq. (8) lumps all the time de­
rivatives into one term, which can be written

(9) -2(q.v)h - ~ - (y - 1) (V·q) hot - J(h)

Now if distance, velocity, q, time. t, and h are interpreted as having
been scaled with respect to some characteristic length, L, free-stream
velocity, q , characteristic time~ L/q , and q 2, respectively, and

~ ~ ro
defining M a free-stream Mach number,

00 3
qoo

J{h) ;::~2 F(h)
00

then Eq. (8) becomes

(10)

+ 1 F(h) == 0
M2

CO

For irrotational flow, q g V¢, and then from Eq. (7)

h ~-8Q/dt.
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Introducing the potential function in Eq. (10) gives

(lOa) .., ; 1 (v<t>.v~ -1) V 2¢ +

1
+ M2 F( - ¢t) O.

co

The method of parabolic substitution is to substitute a simple func­
tion for F ( -~t)/y~2, termed S (~t), which yields a parabolic equation
and which, since steady-state solutions are being sought, satisfies the
condition S (0) = O.

Within these two restrictions the choice for S (~t) is arbitrary. or
course having made a choice for S, the question of convergence as time
increases of the resulting artificially unsteady flow to steady-state
conditions arises.

3. THE CONVERGENCE QuESTION

A simple choice for S which satisfies the above two requirements is

To study the convergence of the resulting unsteady solution to the re­
quired steady-state values as time increases, a small disturbance
analysis is made for symmetric flow past a thin two-dimensional ob­
stacle. This problem is s~ated as

t,. 0)

a

(Ixl < 2 J

'Pyy = 'Pt

Y(x) fen

Iflx ' Ifly ................ 0

N:o=t1t= 0= t~t =0
~ perturbation potential) Y(x) = surface slope ,of obstacle and

(13)

(12)

where ¢

f(t)
for t < 0,

for t > O.
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The above problem is linear and exact closed form expressions
can be obtained for the potential function. When asymptotic expansions
are made for large t, the solution yields

~ (~) + O(l)x,y = ~ steady t

and therefore as t~, the approximate solution does converge to the
correct steady-state solution.

To investigate another choice for S (~ ), let
t

which also satisfies the two requirements on S. The problem to be
solved is the same as before except Eq. (12) is replaced by

(15)

Th~ solution of this equation subject to conditions (13) can also be
found analytically and expanded for large t to give

$x = ($x) steady + O(~2)

t > y/2

and therefore as t -+~, the approximate solution does converge to the
correct steady-state solution. Since it is of interest to apply this
new relaxation procedure to transonic flow eventually, the convergence
question can also be studied within the vehicle of linearized transonic
small disturbance theory together with the substitution of Eq. (11).
Hence the equation is changed from Eq. (12) to

(1 - M~) <Pxx + <Pyy - Klfix = lfit

where K is a positive constant representing acceleration at some point
on the airfoil. Again, asymptotic expansions of the analytic solution
are easily found to be

¢x "" (¢ ) + O(! e-at )
x ste.ady t

~y (¢y)
1 -at= steady + 0(-2 e )
t
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where a is a constant and hence the approximate solution is seen to
converge to the correct steady-state solution. To examine this question
of convergence for the actual nonlinear equation of interest requires
a complete numerical analysis using high-speed computers.

4. PREPARATION FOR NUMERICAL ANALYSIS

The problem to be discussed in the remaining part of this paper
is the numerical solution of Eq. (lOa) with the substitution (11) for
a high-speed flow past an arbitrary two-dimensional body. To enable
an accurate numerical description of the boundary conditions a con­
formal transformation is made from the physical flow plane into the
interior of a unit circle, hereafter called the computation plane. In
doing thusly, the arbitrary body surface is transformed onto the unit
circle in the computation plane and infinity in the physical plane is
transformed into the center of the circle in the computation plane.
A cylindrical polar coordinate system r, 8 is utilized in the computa­
tional plane so that r ~ 1 corresponds to the body surface and r = 0
corresponds to infinity. As an extra advantage, this mapping procedure
distributes mesh points more densely in those regions in the computa­
tion plane where flow acceleration is the greatest, thus allowing for
better flow resolution in those regions where variables are changing
the most. For some body contours, such as Joukowsky or Karman-Trefftz
airfoils, this transformation can be computed analytically, however,
for arbitrary bodies the method of D. Cathera1l, D. N. Foster and
C. C. L. Sells [1] for calculating the tr~nsformation has been faithfully
followed in this report.

In the general case of flows with circulation, the potential func­
tion has a dipole singularity at r = O. Hence by comparison with in­
compressible flow, it is seen that if ~ is expanded about r = 0 in the
computation plane, the form has to be

(16) cos (a. + 0..1 + 8)

r

where a = angle of attack with respect to x-axis (positive counter
clockwise), al = flow direction with respect to x-axis for zero lift
in incompressible flow (positive clockwise), Ll (8) = unknown function
of 8. .

Hence, to determine L1(8), the transformed equation for ¢ is expanded
about r = 0 and the highest two orders are retained. The result is that

--_.~~---:=tan-lr~l _ M2 tan (a. + 4( + (})]
..J 1 _ M2 t 00

co
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where E is a constant to be determined from the Kutta condition at the
trailing edge and

lon-
1["1 -M~ Ion C. + " + 6)J

is determined to have the same quadrant as a + a
1

+ 0.

A disturbance potential, X, is now introduced by the definition

[

COS Co. + a. + 8)
(17) X = tf?(r)8~t) - r I + E (8 + 0+ 0. 1)

. + r cos C. + " + 6~ •

In terms of X, the boundary conditions at r "" 1 and r '" a are

(18)

(19) X(0, e) t) = ll(e) - E(e + a + t'll) •

By initially selecting

and

then

Hr,O,O) = ¢l •
J.ncompr

(20) x(r,e,O) = 0.

As previously pointed out, E is determined by the Kutta condition at the
airfoil trailing edge located at r = 1, 0 ~ O. This condition requires
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or

(21)

and hence E can be updated at each time level as the solution proceeds.
The initial and boundary conditions have now been put in a form easily
expressed by numerical techniques. However, since a potential func­
tion analysis has been used, there will, in general, be a branch cut
in the computation plane defined by 0 "" 0, 0.:::_ r:'Sc 1. Hence, \1hen
computing G-derivatives along 0 "" 0, central--differeT~ces cannot be used
but must be supplanted with second order accurate forward or backward
differences along the rays 0 = 0, 8 = 27[, respectively. Since pres­
sure must be continuous across this branch cut the velocity corr:ponents
on 0 = 0 must be the same as they are on 0 ~ 2~ for a given r. Hence
along the branch cut one can write 2N + 2 equations, ,.;here N is the
number of mesh points in the radial dIrection excluding r "" O~' for
2 N + 2 values of x. This system of linear algebraic equations can
be ~traightforwardly solved by method of elimination to establish
the values of X along the ray (~ '" 0 and the ray (;;) =:: 2rr in terms of
neighboring X values. The two rays, e = 0 and 8 '" 2Tf now are used as
two additional boundaries to the numerical scheme.

The appropriate equation Vlhich nov must be solved at the interior mesh
points, 0 < r < land 0 < 0 < 27[. is the transformed equation (lOa)
wiih the substitution of (11) for the artificial time dependence and
the introduction of X through Equation (17). This complicated equation
takes the form

CE?(r 2 xrr + X + r xr)
(22) 88

+ M~ ( A Xrr + BXre + C xee + D) xt

where G == transformation modulus and is a function of r, 8,

A = a l + (a2 + a 3E)E + (a4 + aSXr)Xr +

+(a6 + a 7E + a8XO)XO'

B (bl + b2X
r

) (b 3 + E + X8),

C = Cl + C 2 (E + Xo) + c 3 (E + xs )2 + (C 4 + cSXr)X r ,

D '" Cdl + d E + d E2)X + (d + d E + d E2)X +
2 3 r 4 5 6 '(;I

+(d7 + dSE)x r
2 + (d g + d

lO
E)x

e
2 +

+(dll + d12E)X r Xe + d13Xr2Xe + d14Xe2Xr +

+d 3 + ~ ( 3 + 1. 3) + j ~. I" -t. d 1,2
lS Xr 1.'.16 X(: :. un' CIS C • 19" ,
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and ai' bi' ci and di are functions of r, 8 as determined by the com­
puted conformal transformation.

5. NUMERICAL METHOD.

Eq. (22) is now differenced in the classic manner for parabolic
equations. Second order accurate centered differences are used for
spatial derivatives and the first order accurate Euler difference is
used for the time derivative. Truncation error in the time differencing
formula is of no concern since the solution is found when time derivatives
are zero. The boundary conditions given by Eqs. (18) and (19) are im­
posed by using second order accurate backward differencing for X at

rr = 1 artd second order accurate forward differencing for Xe at r = 1,
o = O. The resulting system of equations advances the value for X from
t to t + ~t. Eq. (20)establishes the initial values from which the
relaxation procedure begins. Once the values are advanced from t to
t + 6t throughout the entire interior mesh, and on the boundaries, E is
evaluated from Eq. (21) and the iteration is ready to advance another
time step. The time step is selected at each time level based on a
heuristic approach to the stability question. By analogy with the two­
dimensional diffusion equations in Cartesian coordinates studied by
R. D. Richtmyer [2], the stability criterion for the current problem
was selected as

However, by running several numerical experiments it was discovered that
stability could still be maintained if the 1/2 ~ere increased to 0.61.
Spatial mesh widths were defined by selecting 60 equally spaced rays
with 10 equally spaced points on each ray, not including the point r = O.

6. RESULTS

The above described numerical method has been programmed and run
on a UNIVAC 1106 for the cases of syn~etric flow past a Joukowskv profile,
lifting flow past an 8.57% cambered Karman-Trefftz airfoil of 10° trailing
edge angle, and a NACA 0012 airfoil at 2° angle of attftck. The latter
solution is shown in Fig. 1. The iteration converged in all three cases
for purely subsonic flow and sufficient accuracy was obtained after
about 20 minutes of co~puter run tiEe. For fully nonlinear, compres­
sible flow past a Joukowsky or Kannan-Trefftz airfoil, other results
for comparison with the current ffi8thod could not be found in the
literature. In Fig. 1, the results are compan:d with the numerical
solution of Sells given by R. C. Lock (3). The method can therefore
be seen to work quite well and warrants further extension into the
transonic range.
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7. TRANSONIC FLOW CONSIDERATIONS

To accomplish this task, the substitution form given by Eq. (14),
modified to account for the fully nonlinear potential equation, should
be used to greatly reduce machine running time. The modification comes
about because the coefficient of ~yy in Eq, (lOa) is now a function of
both dependent and independent variables whereas in the small disturbance
theory, the coefficient is unity.

Thus the modification is derived by adding f 9yt and (f2/4)~tt

to f~yy where f, fl' f 2 are functions of space an~ velocity, such
that a parabolic equation results. Thus,

f2 ,f 2
f - 4f - = 01 4

or then

and, since f is known from (lOa), one has an arbitrary choice to make
for f2 or f l , Suppose one chooses £2 c f, then the substitution term
becpmes

Another possibility would be to choose £2 • 11f, then the substitution
term becomes .

The numerical difference scheme for spatial differences must change
when the flow field becomes supersonic locally. Hence, an additional
refinement in the method must be made so that the ~Iach number at each
mesh point is determined and tested to see :i.f the flow ia supersonic
or not. For supersonic points the space differences in the approximate
streaming direction must be backward differences, not central dif­
ferences as they are i.n the subsonic portion. For differences in the
y-direction, the change over in difference scheme is not necessary.
The difference scheme can also be changed to gain some artificial
viscosity which, in addition to stability, furnishes an entropy in­
equality on the solution obtained. Shock waves should occur naturally
as the solution progresses.
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THE BACKVVARD BEAM EQUATION AND THE
NUMERICAL COMPUTATION OF DISSIPATIVE

EQUATIONS BACKWARDS IN TIME t *
Alfred Carasso ~

1. Introduction

The purpose of this paper 1s to survey the main results of [2.6],

dealing with the development of a new algorithm for the approximate solu-

tion of backwards parabolic equations. The exposition is mostly without

proofs, and the reader is referred to the original papers for a more de.

tailed discussion. Sinoe this work was begun, a substantial amount of

computational experienoe has been aocumulated. The method appears to

be a powerful tool. Some computational experiments, undertaken by

a. L.Bu:z:bea at the Loa Alamos Scientific Laboratories, have not been

publ1!hed. '!hey are mentioned in Seetion 3. More recently, [6], the

method waa extended to an intmrestinQ example of a no[Llinm equation,

Burqers' equation, and extensive numerical experiments were carried out

on problems for which ~xpct $olutions are known. In Section 5, we de~

scribe some of the resulta obtatned in [6]. Further applications to non-

linear problems ~re currently under way.

t Spon$ored by the Nationcal Science Foun'daHon under NSF Grant GP 42536
qoej the llnited State$ Army unc:ler Oontract NQ. tA·3l·1Z4~ARO.D~462.

t Department of Mathematics and StatisUcs, University of New MlPXico,
Albuquerque, New Mexico 87131.

* Expanqed version of a talk given at the National Science Foundation
Regional Conference on Ill- Posed Problems, University of New Mexico,
May 1974.' 458



2. Some general remarks on backwards dissipative equations

We shall focus attention on a special but quite interesting

class of ill-posed problems, namely the problems which

arise when the time direction is reversed in a dissipative evolution

equation. Such equations distinguish a time direction as they describe

irreversible phenomena. While the problem of determining the future from

the present is well understood analytically, and a considerable literature

exists which deals with the effective numerical computation of such

forward problems, the same is not true of the backwards problem. Attempt­

ing to reconstruct the past from the present leads to tremendous difficulties,

as the solutions depend discontinuously on the data, and this in an

essential way. That is, continuous dependence cannot usually be re­

stored by reconsidering the question in some other metrizable linear space.

What seems necessary to restore continuity is the imposition of additional

constraints on the class of admissible solutions, such as requiring the

solutions to be positive or to satisfy an a priori bound. On the other hand,

while the constrained problem is well posed in the analytical sense, there

remains the question of devising effective numerical methods in which the

constraints can be incorporated, if one wishes to approximate the solutions.

Thus, the standard stable marching schemes (such as the Crank-Nicolson

or other Pade approximants) which have been widely successful in the

numerical computation of forward dissipative problems, are necessarily

unstable when the time direction is reversed. Thi s is a general theorem
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to be found in [17, p. 59]. What is missing in these classical schemes

is a means of incorporating the constraints. In recent years, it has be-

come apparent that the essential difficulties in the above class of ill-

posed problems are algorithmic in character. By and large, the numerical

analysis of these problems is not as well developed as are the analytical

questions such as backwards uniqueness and stability under a prescribed

bound. Nevertheless, a great deal of effort and ingenuity has been applied

towards the effective numerical computation of such problems; we refer to
•

[16] for an extensive bibliography, and to the paper. by Miller in the present

volume for a viewpoint somewhat different from ours.

It should be pointed out that not all methods which have been pro-

posed are equally effective or applicable. Thus, methods

which require exact knowledge of the data are of limited usefulness in

applications. Even when an analytical expression is available for the

data, round -off error in digitizing that data plays a considerable role and

its effect cannot be ignored. The same is true for schemes which require

the data and corresponding solution to have a Fourier transform with com-

pact support. As the spatial mesh is refined, extraneou s high frequencies

are injected into the solution by the rounding process. These high fre-

quencies may be amplified without bour,d, in arbitrarily small time intervals,

as time evolves backwards. Furthermore, if a smoothing process is used

at each time step, it may not be possible to decide which parts of the

spectrum should be filtered out. Thus, in nonlinear problems, or even in
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linear problems with variable coefficients, there may be genuine inter-

actions between different frequency bands. Several methods which have

been proposed (for linear problems) begin by recasting the problem in

the form of an integral equation, 1. e.

(2. 1) S(T)u =v

where v is the given terminal data at time T, u is the desired initial

data, and 8(T) is the solution operator at time T in the forward analytic

-1
problem. Since [8(T)] is unbounded, various regularization techniques

are then employed to approximate u. The difficulty here is that except

in very simple problems, one generally does not know S(T) explicitly.

Thus, if the equation has variable coefficients depending on time, one

rarely has formulae for the fundamental solution. It is a happy fact that

many stabilized backwards dissipative problems enjoy the property of

Holder-continuity with respect to the data on compact subintervals of

(0, T]. Usually, the exponent lJ.(t) is a function of t which tends to

zero as t ~ a . As a simple example, in linear problems with a self

adjoint operator one can give a sharp estimate for the error at time t,

norm,One hasthe initial data.

corresponding to an error 0 at time T, given an a priori bound, M, for

in the L
2

(2.2)

T-t t- _.
" E (t) II :: 2 M ToT , a < t < T .

t
Here lJ.(t):: T' and there is "destruction of information'· as t ~ O. This

loss of information is more severe than that which takes place in the usual well-
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posed linear problems of mathematical physics. On the other hand, the

situation is far worse in other classes of stabilized ill-posed problems.

Thus, in [9J, F. John gives an example where a much weaker type of

continuity, "logarithmic continuity'; can be shown to actually hold. In

-400 000 000
that example, the data must be known to an accuracy of 10 ' ,

in order to produce an accuracy of 10 - 3 in the corresponding solutions!

An important requirement for a numerical method is that it should pre serve

the Holder dependence inherent in the analytic problem. This requirement

is stronger than stability. The latter simply requires that round -off or

other errors in the data not be amplified without bound in finite time;

however, stability alone may not prevent the scheme from amplifying

errors in the data far beyond the theoretical limit set by the estimate

(2.2), resulting in an unwarranted loss of precious information. Thus in

[8 J, an interesting example is given of a stable marching scheme for the

backwards heat equation, in which logarithmic continuity with respect to

the data actually holds. Similarly, [18 ],. Tichonov's method for the back-

ward heat equation is only logarithmically continuous with respect to the

data.

Even at the analytical level, there remain genuine difficulties in

obtaining a priori stability estimates in backwards dissipative problems.

Such estimates are of fundamental importance as they measure the rate at

which information is destroyed as time evolves backwards. To illustrate

this point, consider the situation for the Navier-Stokes equations back-

wards in time. In [12] the authors consider the class of smooth solutions
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of the Navier Stokes equations, in a space time domain n X[0, T]

satisfying

(2.3) sup {lul
2

+ Icurlul
Z

+ lu
t
l2

} < N
Z

(x, t)e nx[O, T]

where N is a given a priori bound. Let v be the kinematic viscosity,

V the volume of 0, and let u
l
(x, t), Uz(x, t) be two smooth solutions of

the Navier-Stokes equations, satisfying (2.3) in n X [0, T], and such

that,

(2.4)

It is shown in [lZ] that then, for 0 ~ t ~ T ,

(Z. 5) lIu(' t) -u (. t)II Z «4NZ)1_!J.(t)o!J.(t)exp [N4
(t-!J.(tlT]

l' Z' Z - Z
L (0) v

where !J.(t) is given by

(2.6) !J.(t) =
1 [

Z(N2 +l)t
- exp

v

The estimate (2.5) establishes Holder-continuous dependence on the data

and implies backwards uniqueness of smooth solutions. On the other hand,

as far as computing the solutions are concerned, (2. 5) is rather discon­

certing. For example, if V=T =N =1, v =10 -1, and 0 =10 - 50, we have from

(Z. 5) at t = T/Z ::: liz,

(2. 7)
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-500
Moreover, (2.7) is little changed by choosing {) = 10 ,since the rate

at which j.J.(t) ~ 0 is so large, even at such small Reynold s numbers.

It is not known whether the exponent f-L(t) is sharp, or whether constraints

different from (2. 3), possibly involving other combinations of derivatives,

would result in a more encouraging estimate. In non-linear problems, a

major task appears to be that of isolating classes of equations for which

one can obtain fairly reasonable Holder estimates. As a very small be-

ginning, the one dimensional Burgers' equation,

(2.8) u = v U - uu + f(x, t),
t xx x

o < t < T

is considered in [6]. It is straightforward to show that if ul(x,t),

u
2

(x, t), are two solutions satisfying

(2. 9) Max { Iu. I, Iu. t I, Iu. tt I, Iu . t I} < N,
1 1, 1, 1, X -

i = 1, 2 ,

for (x, t) E [0, L] x [0, T], and if

(2.10)

then for 0 < t < T

(2.11)

where

T -t t

/I ill (. ,t) - liZ (. , t) II 2 ~ 2 K(t) N T 6 T
L

(2.12) K(t) = exp [4NL+t(T-t)4~NL)2+ (1+3 V lNL}j.

In [6 J, extensive numerical experiments are presented for the final value

problem for Burgers' equation. Some of these results will be described in
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:he present paper later on. (See Section 5). One of the points suggested

by these experiments is that the factor K(t), which involves the Reynolds

number, appears to playa significant role only when the solutions to

Burgers I equation develop steep gradients approaching a II shock ll
• For

more reasonable solutions, one finds that, even in single precision, 1. e.

with a unit round -off error of about 10 -8, one can often attain significant

accuracy at 90% of the way back from T = l. Thus, the difficulty of

reconstructing past steep gradients from future smoothed data appears

to be explained by the factor K(t) in (2.11). Conceivably, in the case

of the Navier-Stokes equations, the similar exponential factor in (2.5)

may alone suffice to account for the difficulty of reconstructing steep

gradients, and in some suitable norm, there might well exist a Holder

estimate in which I-l(t) is independent of the Reynolds number, and decays

linearly with t .
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3. The backward beam equation approach in self-adjoint problems with
time independent coefficients

We shall now describe a new method, which was recently developed

in (2), for computing linear self -adjoint parabolic equations backward s

in time. In this section we consider the case where the spatial operator,

A, is independent of t. The case where A depends on t is more subtle

and is discussed in Section 4.

Let f(x) be a given function in L
2

(0), where n is a bounded domain

in RN, in R
N

with a smooth boundary an. Let A be a non-

negative self-adjoint operator in L
2

(0); in the concrete cases, A

is the unbounded operator corresponding to a self-adjoint elliptic boundary

value problem in n, with, say, zero Dirichlet data on an. Given the

positive constants 6, M, T, we consider the following problem.

Find all solutions of

(3. 1) u
t

= -Au, °< t < T

such that

(3.2)

and

(3. 3)

IlU(',T) - fll < 6,

lIu(',o)II::M.

To solve this stabilized backwards problem, consider the following device.

Set

(3.4)
1 M

k = - log (-)
T 6
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kt
and then put v = e u in (3.1). This leads to

(3. 5) v
t
= -(A - k)v, 0 < t < T

(3.6) /IV(', T) - ekTfll :: ekTo, Ilv(O) II < M .

Differentiating (3.5) with respect to t, we obtain the "backward beam

equation" associated with (3.1), namely,

(3. 7) V tt = Bv , O<t~T,

(3. 8)

Z
where B = (A - k) . Thus, B is a non-negative self-adjoint operator in

L2
(O); in particular, B is "m-accretive". For such equations, it is easy

to show that solutions are norm-convex. We have,

d
2

2 2
-2 IIv(t) II = z/Iv ' (t) II + Z Re(Bv, v) ~ 0
dt

In particular, if v(t) is a solution of (3. 7),

(3.9) Ilv(t) II ~ T;t IIv(O) II +~ IIv(T) II .

The last inequality suggests that the "initial-terminal value" or

"two-point" problem is well-posed for (3.7), 1. e. data should be pre-

scribed at t =0 and at t =T. Using Hadamard's classical example of

the Cauchy problem for Laplace's equation, it is easily shown that the

initial-value problem is in general1l1-posed for (3.7). It also follows

from the spectral representation of B, that solutions to the two point

problem exist, for arbitrary data v(O), v(T) in L
2

(0); moreover, as

shown in [5], (3.7) has the" smoothing" property. That is, if A has
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sufficiently smooth coefficients, arbitrarily high Sobolev norms of the

solution at time t, 0 < t < T, can be estimated in terms of the L
2

norms of the data v(O), v(T). In a very real sense, (3.7) is an "elliptic"

equation in Hilbert space.

Let w(', t) be the unique solution of

(3.10)

(3.11)

W tt = Bw,

W(O) = 0

O<t<T,

kT
w(T) = e f

We then have

Theorem 3.1

Let u(', t) be any solution of the stabilized backwards problem

(3.1)-(3.3). Let k be as in (3.4), and let w(·, t) be the unique solution

of (3.10)-(3.11). Then,
T -t t-- -

(3.12) Ile-ktw(.,t) _ u(.,t>l1 < M T oT

Moreover, if A has smooth coefficients, N is the dimension of 0, q

N
is a positive integer, and 20- > "2 + q, there is a constant K such that

for 0 < t < T ,

(3.13) Max /ID13U(.,t) _ e-kt
D 13W(.,t)1/ <

00-

1~I::.q

{ (

M )O-) T_t tlog( -) --
K (t)-O" + (T_t)-cr + T 1) M T [) T
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Proof:

kt
If u is any solution of (3.1) -(3.3), V:::; e u satisfies (3.7) and

tne inequalities (3.6). Let z(', t) ::: v - w. Then, from (3.9) and (3.6),

we have,

(3. 14)

T-t t

Ile-ktz(.,t)ll:: T;t Me-kt + ~ ek(T-t) 6:::; M T 6 T

This proves (3.12). The proof of (3.13) is more complicated and we refer

the reader to [5].

Remark 1. Since the estimate (2.2) is sharp, for the difference of any

-kt
two solutions of the backwards problem, it follows that e w above,

is a "best-possible" L2 approximation to any solution of the backwards

problem. Moreover, even though the data f(x) is an approximation to

2 -kt
u(', T) in the L -norm, e w approximates the solutions of the back-

00
ward s problem, together with their derivatives, in the L norm, on

O<t<T.

Remark 2. By using (3.12) and the triangle inequality, we obtain an

independent proof of the convexity estimate, (2.2), for the difference of

any two solutions of the backwards problem. Similarly, (3.13) and the

triangle inequality lead to a maximum norm stability estimate, for the

derivatives of any two solutions, in terms of the L
2

norm of the data.

In actual numerical computation of the solution of (3.10) -( 3.11), the

time variable is discretized using a centered time discretization. With

T = (N+l)a t, we have,

(3.15)
n+l n n-1

w -2w +w
2

Llt

n
= Bw , n :::; 1, 2, .. " N ,

(3.16)
o

w :::; 0 , w N+l :::; ekT f .
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This system of linear equations can be written in tridiagonal matrix

form, with an unbounded operator along the main diagonal. See [3], [4],

[2J. Using the tridiagonal algorithm, one obtains the existence and

uniqueness of solutions to (3.15), (3.16), together with the basic norm­

convexity property (3.9), for the solution of this finite difference analog;

the proof uses only the 11 m-accretiveness" of B. Moreover, this method

of proof provides one of several possible algorithms for the solution of

this system of linear equations. To discretize the spatial operator B,

one use s finite difference analog s of the elliptic operator, or Galerkin

methods using trial functions satisfying the boundary conditions. Either

method preserves the" m-accretiveness" of B. Consequently, the fully­

discrete scheme is unconditionally stable and has the property (3.9).

Finally, estimates such as (3.12), (3.13), supplemented by the truncation

error at time t in the fully-discrete scheme, remain valid for the solution

of the fully discrete problem. We refer the reader to [2] for a more de­

tailed discussion of these matters. By and large, the numerical analysis

of (3.10), (3.11), is very similar to that for elliptic boundary value

problems, for which an abundant literature exists. Thus, direct or iterative

methods may be used to solve the system of linear equations. In [2], a

computational example is discussed in detail for a one dimensional problem.

Further examples will be given later in the present paper, when we discuss

the backwards problem for Burgers' equation. (See Section 5). Finally,

we mention some successful computations, on two-dimensional problems

in rectangular regions, carried out by B. L. Buzbee at the Los Alamos

Scientific Laboratorie s.
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4. Self-adjoint problems with time dependent coefficients

An important feature of the backward beam equation approach 1s

that the method is applicable to self-adjoint parabolic equations with

smooth time dependent coefficients. The assumption of smooth dependence

on time is important, as backwards uniqueness may fail for non- smooth

coefficients. See the example of Miller 1n [14].

For each t ~ 0, let a(t;u, v) be the symmetric bilinear form on

H~(n) given by

(4. 1)

where the a depend smoothly on x and t, andpq

(4.2) a :: a
per qp

m
We assume a(t;u, v) to be strongly coercive on Ho(0), i. e.

there exists a positive constant (;,I, independent of t, such that

(4.3) a(t;v, v) > w II v 11
2

,- m
m

V V E H
O

(0) ,

where II II denotes the Sobolev norm. Let 8(t;U, v) be the bilinearm

form obtained from a(t;u, v) by replacing a by a = eat a . Thepq pq pq

form a(t;u, v) will play an important role in the subsequent discuu1on.

Let P(t) be the unbounded self-adjoint operator in L
2

(0) defined by

a(t;u, v), L e. ,

4/1



(4.4) ( P(t) v, v> = a(t; v, v)

where ( , > is the scalar product in L
2

(0). An integration by parts

shows that P(t) corresponds to the self-adjoint elliptic partial differ-

ential operator,

(4. 5)
xeO, t>O,

together with the Dirichlet boundary conditions,

(4.6) Ipi:: m - 1, t > 0

We shall consider the parabolic problem

(4.7) u
t

= - P(t)u, t > 0 •

and we note that from (4.6), the domain of P(t) is fixed as t varies.

We now introduce the following definitions.

Definition

The parabolic problem (4.7) is minimal-smoothing on [0, T] if

(4.8) a(t; v, v) :: a If v e V, O<t<T.

It is strongly - smoothing if

(4.9)

where II II denotes the L
2

norm. We say that (4.7) is maximal-

smoothing if
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(4.10) a.(t;v, v) < allvll
2

,- m a > ° .

The above definition distinguishes three broad classes of problems.

Further refinements are clearly possible. In the interest of simplicity of

exposition, these refinements are not considered here. It will be seen

later that the maximal-smoothing case is the hardest to compute back-

wards in time. This difficulty is not a defect of our method. Rather, it

is as sociated with the type of Holder estimate which obtains in that case.

Each of the maximal-smoothing and strongly-smoothing cases can be re-

duced to the minimal-smoothing case by means of a preliminary trans-

formation.

In the maximal-smoothing case this reduction is accomplished by

stretching the time variable. With wand a the constants in (4. 3) and

(4.10), define the function

(4.11) y;(s) = (:::) 10g(1 + as/w),
a

5 > 0

Then, ljJ'(s) > 0, l\J"(S) < 0 and

(4.12)
2

wl\J" + a(lfJ') = 0 .

From the bilinear form a(t; u, v) in (4.1), we construct the form b(s; u, v)

where

(4.13) b(s; u, v) = a(ljJ(s); u, v) ljJ'(s), s ~ 0 ,

= 7. J b (X, s) Dqu DPv dx
jpl:1ql::.m n pq
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with

(4. 14)

m
Let b' (Sj u, v) be the symmetric bilinear form on H0 (0), obtained from

ab
(4.13) by replacing b (x, s) by a

pq
. We then have,

pq s

(4.15) b
2.

'(5; u, v) :::: 41" a(4J(s); u, v) + (41 ' ) a(4J(8); u, v) •

Hence, using (4. 3), (4.10), (4.12) and the fact thatllJ" < 0, we obtain

from (4.15),

(4.16) b'(SjV, v) < [a(IIJI)2+ WI\!IIlllvII Z =0,
- m

We now put t:;;: I\!(s) in the parabolic problem (4.7). Let

(4.17) e(x, 5) :::: U(X, ~(S», X, 0, S > 0

then, e satisfies the parabolic problem,

(4.18)

(4.19)

x. 0,

s > 0,-

s > 0 ,

where GO(I);;; 1\I'(s) PO('-!J(iI». This transformed parabolic problem is the

one qanerated by the symmetric bilinear form b(sj u, v). Since b'(s; v, v) < 0 ,

we have the minimal· smoothing ca~e for the transformed problem.

In the stronsz.lx Imoothil}j case, we put

(4. aO) b(tj u, v) .. a(tj u, v) • 2 'Yt J U v dx •
o
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Then, from (4.9), b (t; v, v) < O. Next, put

(4.21)
t
2

~(x,t)=eY u(x,t), xeO, t>O.

in the parabolic problem (4.7). TIlen ~ satisfies,

(4.22)

(4.23) Ipl~m-l ,

where GO (t) ::: Po (t) - 2"V t. This is the problem generated by the bilinear

form b(t;u, v). in (4.20). Thus, (4.21), transforms the strongly smoothing

case into the minimally smoothing case.

For the purposes of the following discussion, it may now be assumed

without loss of generality that the parabolic problem,

(4.24) Ut =-P(t) u, t > 0 ,

Z
is minimally smoothing on the interval [0, T]. Given f(:x) in L (0) ,

-and the positive constants f:J, M, T, consider the following problem. Find

all solutions of (4.24) such that

(4.25) l/u(',T) - fll:: '6

(4.26)
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Differentiating with respect to t, we obtain

...
... 1 M kt

As in Section 3, we put k =T log ( ;:;) and v =e u in (4.24), to obtain,
6

O<t<T.-v
t

::: -(P(t) - k )v,(4.27)



(4.28) V
tt

=: A(t) v , O<t<T,

2
where A(t) is an unbounded self-adjoint operator in L (0). See [4,

Section 3]. In fact, for each fixed t > 0, A(t) is the unbounded operator

corresponding to the following elliptic boundary value problem of order

4m in n:

.... 2
-p o(t)]U = 0,(4.29) [(Po(t) - k) x En,

(4.30) DPu = DP[Po(t)uJ ::: 0, X E an, Ipl::m-l

where Po(t) is the differential operator obtained from Po(t) in (4. 5) by

differentiating the coefficients with respect to t. Since the problem

(4.24) is minimally-smoothing by hypothesis, we have,

(4. 31)

Consequently, A(t) in (4.28) is a non-negative self-adjoint operator for

each t. Note, however, that even though (4.24) is a fixed domain parabolic

problem, the backward beam equation (4.28) now involves a variable

domain operator, A(t), in general. See [4, Section 3]. Unlike the problem

in Section 3, it is no longer possible to prove existence theorems for (4.28)

by using the spectral representation of A(t) at each t. Remarkably enough,

one can obtain strong results, (1. e. existence of solutions lying in the

domain of A(t) for each t), even in this variable domain case, for the

two-point problem assoc. ,.ted with the finite difference analoq of (4.28).

No assumptions need bE: ':1".ade about the manner in which DA(t) varies with
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t, and the proof uses only the "m-accretiveness" of A(t) for each t.

L'3t T::: (Ntl)L:l t, and consider the system of difference equations,

(4.32)

(4.33)

n+l n n-l
w - 2w +w

2
~t

°W :::: a,

n n
- A w = 0,

w N+l - b- ,

n =1,2, ..• ,N ,

where a, bEL
2

((2),

proved.

Theorem 4.1

n
and A := A(nA t). In [3], the following theorem is

There exists a unique solution, w(t), in (4. 32), (4.33), with

w(t) E DA(t), for each t =nA t, n =1,2, ... ,N, and this for arbitrary

2
a, bEL (Q). Moreover,

(4.34) IIw(t) II ~ T;t Iiall + ~ Ilbll

The proof of Theorem 4.1 given in [3] is constructive, and is based

on the tridiagonal algorithm. If finite element method s are used to discretize

A(t) for each t, such method s pre serve the accretivene s s of A(t) .

Consequently, the resulting fully-discrete scheme also has the norm con-

vexity property (4.34). In practice, iterative methods, such as block

relaxation techniques, may be used to solve the block tridiagonal system

of linear equations. See [4].

We now turn to the question of approximating the solutions to the

parabolic problem (4.7), backwards in time, given an a priori bound, M,



2
for the initial data, and given a function f(x) E L (rl), such that

lIu(·, T) - fll ~ 6. If (4.7) is minimally-smoothing, we solve the system

(4. 32) with the two ~point conditions,

(4.35)

and

o
w = 0, W

N+l =e
kT

f

(4.36)

We then define,

(4.37)

1 M
k = - log -T (>

-kt
u (t) =e w(t)app

as our approximation to the solutions of the backwards problem. Thus,

this case is treated in exactly the same way as the problem in Section 3.

If (4.7) is strongly-smoothing, we first transform to the minimal

case by means of (4.21), and solve the resulting system (4. 32) for the

transformed problem, with the two-point conditions,

(4. 38)

where,

o
w = 0,

(4.39)

We then define,

(4.40)

1 T
2

k = T {logM -log(e" 6)}

2
- yt -kt

u (t) = e e w(t)
app
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as our approximation to the solutions of the original problem. Finally,

in the maximal-smoothing case, we transform to the stretched variable,

5, as in (4.17). Let AS = S/N+1, where

Theorem 4.2

S:: (~) [eaT/ w _ 1] .
a

o
W :: 0,

T-t

II u(t) - u (t) II < M T
app -

-1 -1
u (t) = exp[ -kljJ (t» w(t\J (t» ,app

(4.41)

(4.42)

Let u(t) be any solution of the stabilized backwards problem for
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(4.43)

We solve the system (4.32) in the s-variab1e with the two-point conditions,

1 M
and k::: S 10g("5) •

Let·

As our approximation to the solutions of the original problem, we define,

(4.44)

(4.45)

(4.7), and consider u (t). In the minimally smoothing case, we have,app

result.

where w(s) is the solution of (4. 32), (4.42). We then have the following

In the strongly-smoothing case,



(4 'I))

T-t

llu(t) - u (t) II < exp[yt(T-t)] M T
app -

48U

discretization.

in (4.47). An example of the maximal-smoothing case is provided by a

2
The extra term O(A t )

eQ't/w _ 1

tJ.(t):: aT/w 1
e -

]I u(t) - u (t)]I < M1-tJ-(t) 6tJ.(t) + O(A t 2) ,
app(4.47)

Proof

(4.48)

where,

now considering the fully discrete scheme as opposed to the evolution

represents the combined spatial and time discretization errors, as we are

Theorem 3.1, together with a subsequent inverse transformation in the

The proof of each of the three inequalitie s follows from the norm-

convex property of the solution of the backward beam equation associated

with each of the transformed problems, as in the proof of (3.12) in

Finally, in the maximal sme-thing case,

case of the last two inequalities. See [2J.

equation (4.28). It is assumed that the spatial mesh is chosen so that

the spatial truncation error is of the same magnitude as that of the time

Remark. By making At - ° in the above error estimates, we recover

logarithmic convexity estimates originally obtained by Agmon-Nirenberg,

[1]. Note the exponential decay to zero as t ~ 0, of the exponent J.L(t)



simple diffusion equation in which the diffusion coefficient grows with

time. The strongly smoothing case corresponds to a diffusion equation

with a growing zero order term. The minimal case corresponds to a

constant or decaying diffusion coefficient. By considering a diffusion

coefficient dependending only on t, one can show that (4.47) is sharp.

In such a problem, considerably more precision in measurement is necessary

at time T, in order to attain significant accuracy backwards in time, as

compared with the other two cases.
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5. Computing small solutions of Burgers' equation backwards in time

We shall now describe some recent results dealing with the ap-

plication of the backward beam method in the computation of the final

value problem for Burgers' equation. The reader is referred to [6], for

proofs and a more detailed discussion of the main results. We consider

the following initial boundary value problem for the one dimensional

Burgers' equation,

(5.1) u = vu - uu + f(x, t),
t xx x o :: x :: L, 0 < t < T

(5.2) u(O, t) =u(L, t) =0, t > 0

(5. 3) u(X,O) = a(x), O<x<L

where a(x) and f(x, t) are sufficiently smooth that the (unique) solution

of (5.1)-(5.3) has sufficiently many derivatives on [0, T]. Let A be the

positive self-adjoint operator corresponding to -u ll with zero boundary

conditions, and let

(5.4) F(u) = -uux

We may then write (5.1)-(5.3) in the form of an evolution equation in

2 ,
L [0, L], VIZ,

(5. 5)

(5. 6)

u = -vAu + F(u) + f(t),
t

u(O) = a

482

O<t<T,



One way of sol vi ng the forward problem is by means of the

following iterative procedure,

(5.7)
o 0

u = -vAu + f(t),
t

O<t<T

(5.8)

and for each m = 1, 2, 3, "',

o
u (0) = a ,

(5.9)

(5.10)

m m m-1
u

t
= -vAu + F(u ) + f(t),

m
u (0) = a .

O<t<T,

In fact, this procedure was used by Kato and Fujita in [10], [11], as a

means of proving existence and uniqueness theorems for the Navier-Stokes

equations, which they viewed as an initial value problem in Hilbert space.

An important feature of the above iteration is that one proceeds through a

sequence of inhomogeneous linear parabolic problems with constant co-

efficients. Concerning the convergence of this iterative process, we have

the following theorem. See [6].

Theorem 5.1
1 1 1

Let a(x) belong to D(A 2): and let f(t) E D(A2 ) with II A2 f(t) II E

1
L [0, T]. Let

(5. 11)
1

IIA1 f(s) lids] < 1

then
1

Azu
m

exists on [0, T] for every m. Let

1

64 LT 2e = 1 - [1- (-)
v

Then 0 < e < 1, and
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(5. 12)

Moreover, 1£ u(t) is the unique solution of (5.5), (5.6),

(5.13)

lIlv/1I denotes Sup IIv(t)II, and
O<t<T

In the above statement of the theorem,

1 2 L 2
If A2' v(t) II == J Iv (x, t) I dx .

o x

The condition (5.11) is sufficient for convergence in the norm

III Ill. In practice, convergence may occur even if (5.11) is severely

violated, by as much as a factor of 1000 in some cases. See [6] for

several numerical examples. On the other hand, (5.11) cannot be too

severely violated for convergence to occur on [0, T]. In general, the

convergence of (5.7)-(5.10) is only local in time, even if a unique smooth

solution exists for all t > 0. An example of divergence, except for t

sufficiently small, is given in [6]. In that example, the exact solution is

known and is found to develop steep gradients, 1. e. a smooth approxima-

tion to a 1/ shock" evolves from the initial data. Convergence occurs before

the gradients become too steep. See also Example 2 and Figure I below.

The essential idea behind the algorithm for the backwards problem,

is to solve each linear parabolic problem in the Kato-Fujita sequence of

iterates, backwards in time, using the value of the solution to (5.5), (5.6)

at time T. Each such linear backwards problem is solved via the backward

beam equation discussed in Section 3. Since each linear problem has
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Imagine that each b (x) is known ap­
m

~onstant coefficients, the "Fourier Method" of Kreiss-Oliger can be used

:;:; great advantage. That is, one calculate s the spatial derivatives at

the mesh points, by differentiating the trigonometric polynomial which

interpolates the funCtion values at equally spaced grid points, using at

least 2 points per significant wave length. If the data, inhomogeneous

term, and solution have smooth periodic extensions, this technique for

differentiation is highly accurate as shown in [13]. It is also extremely

attractive in that one can make use of Fast Fourier Transform algorithms.

(Such a method has been employed by Orszag in [15), for the Navier-

Stokes equations.) Finally, with this particular technique for discretizing

the space variable, the algebraic problem of inverting the "block tri-

diagonal'· matrix in (3.15) becomes trivial. One has a scalar positive

definite tridiagonal matrix to invert for each Fourier component in turn,

and such matrices can be efficiently inverted by a standard algorithm. It

should be remarked that the high accuracy in spatial discretization is

quite important in the pre sent equation, where there may be high frequency

components in the solution at positive times, even if such components are

absent in the initial data. This is a basic property of the homogeneous

equation. See the classic paper by Julian Cole in [7].

To motivate our main result, consider the following "thought ex-

periment". Let {urn(t)}oo be the sequence of iterates in the forward
m:::O

m m
problem, and let u (T)::: b .

"'"proximately. Let b be the apprOXimate value of b , and supposem m
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(5. 14) m ::: 0,1,2, ..•

Suppose further that (5.11) is satisfied for the forward iteration. Then,

from (5.12), we have

(5.15)

1
1 V "2

/!IAzu
m lll < M::: 6(64LT)

We may then pose the following linear backwards parabolic problem for

each iterate um(t):

Find all solutions of

(5. 16)

such that

(5.17)

(5.18)

m m m-l
u

t
::: -vAu + F(u ) + f(t),

1 ""
IIA2(b _ um(T))!I < 5

m
1

II A2 u
m

(O) II ::: M •

O<t<T

1 M m
Using the backward beam equation with k = T 10g(5)' each u (t) may

then be approximately solved backwards in time, and used to generate

a new approximate inhomogeneous term for the next iteration. Because

of the "destruction of information" as t ! 0, it is clear that sizable

errors will be generated at t:::: ° and passed on to the next successive

iterate. The next theorem assesses the accumulated error after m steps

of this process. See [6] for the proof.

Theorem 5.2

Let (5.11) be satisfied. Let Wm(t) be the sequence of successive

approximations obtained via the backward beam equation. Let u(t) be

the solution of (5. 5), (5.6). Then there exists a positive constant C ,
m

depending only on m, such that

486



m-3 1
where 13 m = 2 + '2 .

Remark. It follows from (5.19) that given any e > 0, one can make

II 1. m .!
A2w (t) - A2 u(t) II < e, uniformly on compact subintervals of (0, T] ,

by choosing 0 sufficiently small and m sufficiently large. On the

other hand, even though (5.11) is satisfied so that the forward iterates,

mu (t), converge on [0, T], the above inequality does not imply convergence,

for fixed 6 > 0, as m - 00 •

The above theorem is not strictly applicable to the algorithm which

is used in practice. In the first place, (5. 11) may be severely violated•
....

In the second place, the functions b (x) are not available. Rather, onem
....

has an approximation b (x) to the terminal value u(x, T), where u is

the solution of the non-linear problem (!::>.l)~(5. 3), and,

(5.20)

1 1 _

II AZu(. , T) - AZ b II ~ 6 •

From physical or other considerations, one may obtain an a priori bound,

(5.21)

1 M
Using the given data b (x) and setting k::; T log( '6 ), each inhomogeneous

linear parabolic problem is then solved backwards with the backward beam

equation. In an extenSive series of numerical experiments, with problems

for which exact solutions are known, it is then found that Theorem 5.2 is

qualitatively correct as far as the algorithm which is used 1n practice is
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concerned. Thus, the solutions are well approximated after a relatively

small number of iterations. Further iterations may lead to rapid divergence,

even though the forward iteration converges. In many cases, one observes

considerable improvement before the onset of divergence. The situation

is analogous to that of the divergent power series in the theory of

asymptotic expansions, where the first few terms often provide excellent

approximations. Furthermore, in several experiements, the distance back

into the past where significant accuracy can be attained, is greater than

might be expected from the a priori stability estimate for Burgers' equa-

tion given in Section 2. We shall now give several numerical examples.

Example 1

Consider

(5.22)

(5.23)

(5.24)

u = vu - uu ,
t xx x

u(O, t) =u(n, t) =0,

u(x, 0) =uo Sin x,

o<x< 'IT, O<t<l,

For any positive v and any uo' the exact solution of this problem was ob-

tained by Cole in [7]. It is given by

(5.25) u(X, t) =

00 2
4v L: e -vn t

n-1

Uo
n 1(-2)Sinnx

n v

2 u
-vn t 0

e I (~2 ) Cosnx
n v

where I (z) is the modified Bessel function of the first kind. From (5.25),
n



We observe the effect of non~linearity, in that the initial pure sine wave

evolves into a periodic function in which all frequencies are present. It

is instructive to associate a Reynolds number with the above problem.

Following Cole, [7], we define

(5. 26)

In this example we chose ua :::: 1 and v::. 0025, so that Re:: 126. As

far as the sufficient condition for convergence of the forward iteration is

concerned, we actually have, in the present case,

(5.27)

method was then used with

The expression (5.25) was evaluated at 64 equally spaced mesh points

on [0, Z'lT], at T:: 1, to generate the terminal data. The backward beam

1
L}, t :: 301' and with Fourier techniques to

discretize the space variable, using 64 equally spaced points on the

period interval [0, 2'lT]. The computations were performed in single pre-

cision on UNIVAC equipment at the University of Wisconsin. Thus, the

-8
unit round -off error is of the order of 10 • Using M = .1, we then

obtain k:: 109(~)::::: 18.7 .

Since the exact solution is known, a comparison of the computed

solution with the exact solution was made after each successive iteration.

At each time t = DL}, t, n = 1,2, ... , N, the relative error in the discrete

spatial L
2

norm, was computed after each iteration, to observe the
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behavior of the backwards iteration. This error is tabulated in Table 1,

for the first six iterations, for 17 values of t lying between zero and

1. Little change in the relative el"fOr pattern appears after the fourth

iteration. Despite the moderately large Reynolds number of 126 in the

present example, and the appearance of the exponential factor exp[Re]

in the Holder estimate for Burgers' equation, we see that even with 6 of

~8 -9
the order of . I x 10 =10 , a relative error of less than 10 % is achieved

as far as 93% of the way back from T =1. In the above example, the

exact solution does not develop steep gradients within the time interval

(0,1]. Moreover, the forward iteration converges, although (5.11) is

violated.

Example 2

The problem is again (5.22)-(5.24) but with Uo ~ 40 and v ::; 1 .

As in the previous example,

(5.28) Re ;;; 126 •

However, in lieu of (5.11), we now have

(5. 29) (~)t II Aia 11:= 711 •
v

In this example, the forward iteration diverges for t ~ .04. An independent

evaluation of the exact solution, using (5.25), reveals that the initial

sine wave develops steep gradients almost immediately. See Figure 1.

A smooth approximation to a II shock" evolves, broadens, and then dies

out. Attempts were made to compute this problem backwards in time, in
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TABLE 1.

Relative error in the L2 norm, as a function of time and
number of iterations, in the backwards computation of Example 1

~items
1 2 63 4 5

TIME

.0332 .29+00 .29+00 .29+00 .29+00 .29+00 .29+00

.0664 .95-01 • 89-01 .85-01 .84 -0 1 • 84 -0 1 · 84 -0 1

.0997 .54 -0 1 .43 -0 1 • 35 -0 1 · 30 -0 1 · 30 -0 1 .30-01

• 1661 .46-01 • 34 -0 1 .26-01 .21-01 · 21-01 .22-01

.2326 .42 -0 1 .28-01 .22 -01 · 19 -01 .19-01 .19-01

.2990 · 37 -0 1 .22-01 .17-01 .15-01 · 16 -01 · 16 -0 1

.3654 • 34 -0 1 .21-01 .17-01 · 16 -0 1 · 17 -0 1 .17-01

.4319 .29 -0 1 • 16 -01 · 14 -0 1 .13-01 · 13 -01 • 13 -0 1

.4983 .27-01 · 11-01 .84 -02 · 80 -02 .81-02 .81-02

.5648 .23-01 • 93 - 02 .79-02 .77-02 .78-02 .78 - 02

.6312 · 18 -01 .75-02 .66-02 .65 -02 .65-02 .65 -02

.6977 · 17 -0 1 .13-01 • 12 -0 1 · 12 -01 · 12 -0 1 .12-01

.7641 • 12 -0 1 .29 -02 .26-02 .26-02 .26 -02 .26-02

.8306 · 82 -02 .40-02 · 39 -02 · 39 -02 · 39 -02 · 39 -02

.8970 · 83 -02 .75-02 · 75-02 .75-02 .75-02 .75 -02

.9634 .45-02 .47-02 .47-02 .47-02 .47-02 .47-02

.9967 · 32 -02 • 32 -02 · 32 -02 · 32 -02 · 32 -02 · 32 -02
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Figure 1. Development of steep gradients in the exact solution
of the problem in Example 2.



sL~Jle precision, starting from a time Tl sufficiently close to zero, that

thl," "shock" would still be clearly defined in the terminal data. This

amounts to reconstructing steep gradients after they have been smoothed,

and clearly requires considerable precision in measurement. No measurable

success was achieved in this experiement.

Although Example I has the same Reynolds number as the present

example, it appears that the exponential factor in the stability estimate

plays a much more important role in the present problem.

Example 3

We now consider an inhomogeneous problem,

(5.30)

(5. 31)

(5. 32)

2
- 8TT vt

u = \lU - Ull + 9iTe Sin 4iTx,
t xx x

U(O, t) := u(l, t) := 0, t > 0

u(x, 0) 3 Sin ZiTX,

O<x<l,

o<t <1,

O<x<l

The exact solution is

(5. 33) u(x.t)
2

-411 vt .:= 3e Sw 2TTX

We chose \1:= 3/14 so that Re:= 14 in this experiement. Note

however that in lieu of (5.11), we have

(5. 34)
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Convergence of the forward iteration occurs at this and even higher value s

of (5. 34) in this type of example. However, even here, where the solu­

tion does not develop steep gradients, divergence of the forward iteration

occurs when v = .05, in which case (5.34) has a value of 2700. See

[6]. The importance of the value of (5. 34), rather than the Reynolds

number, is quite apparent in the behavior of either the forward or back­

wards iterations, and this remains valid in all our experiments.

In the backwards computation of this problem, the relative error at

93% of the way back from T = 1, was found to be of the order of 5000/0

after the first iteration! This error was then reduced to less than 10%

after six iterations. At 77% of the way back from T ~ 1, the initial

relative error of 110% was reduced to less than . 3% after six iterations.

In Figure 2, the first seven iterates are plotted, together with the exact

solution, at t = .0664, the 93% value. In Figure 3, the iterates at 77%

of the way back are depicted. Again the influence of the exponential

factor in the convexity estimate, does not seem to be present in this

single precision computation. Indeed, the accuracy which one can achieve

at such long distances into the past is very encouraging.

4. An example of "asymptotic" convergence

In Example 3, the value of 487 in (5. 34) is somewhat of a critical

value insofar as observing the divergence phenomenon suggested by

Theorem 5.2, in less than eight or nine iterations. We consider now the

problem in Example 3 with a slightly lower value of v, v = 3/14.256789.

494



(11,",,,,'~,i~ lI"',u"JI'''~' ~;,,~ ,:'l~~, "11-".
... " ~'~'. I,,?,.. ' :(""1

~Uil'~1f.:; ~~',J1T(l1II lilT flott' .!JI!!ifi IilJo'l"U !I l1!~"lIG~.

I H' ~ £11;1:;:1 ,l!Il.lJtt~k )

~l!I~',""" ~okuf10••' PlI"I& .ell II!""'(III It !1TlIllIl'tgf.
j --- E Uqc, '(J..:,:tPJH ,

r~~tio~f", e~~~~u .. liT 'l"~ .;)..<; ""ff'"
I ._. " ~~"CT ~~I,.I,.T:!)~

I

I
4. .•J;:" Ir. )

:::t I j
1.{-I" \,-( 1\\

.0 ~~.j \ I

,',~~ \J '1 \ .,1-• . 'I

::.:t· .\" I::::[ \I \\J'
.~ .at. \

t I \

.. ;.CLl.........t. ....l..........L.......L..I.~~J ..........._L.•_L.•_L•.J_......L..J
~O .1 .2 .S .4 .5 .i .7 ,I .1-

tt""IJH·C :'nl..u"Utl lIt tf~ .:.J1!!5 '-JFIIl 4 !y!III1":I!!IIt,.
l ... I. tJlj;ln :i'I!JTIL_" I

tllW'U'TID Ml.\.Jt~"1i III' ':lIl .0•• I¥TU
( u. ... r••Cl ,ikuTilIIN

.... -

Figure 2. Convergence of the iteration at 93% of the way back from
T = 1, in the computation of Example 3 backwards in time.

495



n,,·utu ....UUGIIIl Itf "Illif ••~J' .'lfll , Iftft"'I_.
I ~•• I UACr IG'."'JIPI I

'l (\
.6" / \

J....:"t·....·\ r
li \'. I I

.orr \' f.'~ \ i,:'

J J""
. J...J..o.J.....Lo...J......J.~.! !., '!' I

••1;1 .1 .2 .i .4 .!I .G .f .1 .1

te/lI'"UTtO "'.I,f'J'h p,/, 11'" ••Ii ""'fll! 4 STC."'IGfl1.
( .. _- 'I U"t' S:lL'-I'!lMl I

\
\
\

\

\

'of
~

:1
.:~
-'f

"I[r
·.Z

-·3

~
f

-.4r......J.!II'!!,! .................~
.0 .1 .f .3 .• .$ .• .1

·t I'
I I \"r I
r I

.+ /
·V.J
··f ·t \ /
-,sr \ J'
.) \r.....................~+~...l..t....L.o...1.....L.....l ..~4..i-..J.. .....

•C .1 .~ .! ., .~ .• .7 .1 ."

Figure 3. Convergence of the iteration at 770/0 of the way back from
T :: 1, in the computation of Example 3 backwards in time.



We then have,

(5. 35)
1

lIA~f(s)lIds]::: 496 .

In Figure 4, the first seven iterates at 770/0 of the way back from T::: 1

are depicted. The third iteration gives the closest agreement. A more

detailed discussion of this and other features of the algorithm is given in

[6]. The forward iteration converges in this example.
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SPECIAL SOLUTIONS OF THE ONENDlMENSIONAL PARABOLIC EQUATION

Siegfried H. Lehnigk
Physical Sciences Directorate

US Army Missile Research, Development and Engineering Laboratory
US Army Missile Command

Redstone Arsenal, AL 35809

ABSTRACT. From a mathematical point of view, two classes of con­
servative diffusion processes are discussed which can be described by
means of a similarity variable which depends linearly on the original
space variable.

1. INTRODUCTION. We are interested in finding solutions Q(x,t)
of the parabolic equation

(1.1) A(x) Qxx + B(x) Qx + C(x) Q '"' Qt

in the domain D: x > 0, t > 0, with the property

1
Q(x,t) eL [0,(;0) 'itt> °

and, in particular,

o ;!f~ Q(x, t) ux ~ conot" '" •
o

Such solutions are called conservative.

The problem of conservative solutions has a long history. We give
three typical references: Fourier [lJ, Doetsch [2J, and Feller [3J.

We assume that A,B,C e C(O,oo).
equation if and only if C ;;;; B' .. A".
the form

Equation (1.1) is B Fokker-Planck
In this case, it Can be written in

""with B ;;;; 2A' .. B.

Let uS consider two examples:

~. (1.1) with A'"' ax, B "" S1 + S2x , C ;;;; 82, a> 0, ~l 2eR (Fokker"
Planck). This equation has been thoroughly investigated 6y Feller [3J.
In D it has the particular solution
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3. TWO SETS OF COEFFICIENT FUNCTIONS. We now give two sets of
coefficient functions A(x)~ B(x), and C(x) for equation (2.1) which sat­
isfy the conditions (2.6) and (2.8). Proofs and all details will be
nrc -'ant-ad a] Dorrhoro_.. -._ _ _

(3.7) Q(x, t) ;;; b~\t) (\exp ~ ~ a ~l~ 1 10g2 I;)

x [CI IFI (t (Z - ,,),~;~ <¥-ll logZ ~) log ~

+ Cz IFI (! (l - 0") '!;! <¥-l~ I log2 ~)]

Cl~2 ;;; const S ;;; xb~l(t)

where bet) is determined by (3.6) under the initial conditions t = 0,
o

b0 > 0, with x. = 3a ~ ~ 2' and

f~Q(x, t) dx =
o

°if cr > °
~C-::I

CZl2T"rc$l if a = 1 (Fokker...Planck)

4. INITIAL AND BOUNDARY BEHAVIOR. It is appropriate to conclude
with a brief remark on the initial and boundary behavior of the solutions
covered by Theorems A and B.

In general diffusion processes in the domain x > 0, t > 0, it does
not make sense to approach the origin (0,0) because of possible disconti­
nuities in the initial and boundary behavior of solutions at that point.
Therefore, one has to consider the general initia1~boundaryvalue problem
[2J with perpendicular approach to the boundaries of the domain x > 0,
t> 0, which excludes the approach to (0,0). From this point of view, a
solution Q(x, t) of (2.1) is called singular if

Q(x, t) ... ° as t ! ° for fixed X€ (0 ~cc)

and

Q(x, t) -+ 0 as x ~ 0 for fixed te (O~CXl)

This terminology is due to Doetsch [5J (see also [2J).

The conservative solutions (3.3) of (2.1) with coefficients (3.1)
are singular if b = 0 and if either

o

1) A < 1

or

2) A > 1



The existence of singular solutions is rather disturbing within the
framework of diffusion theory and its applications since they introduce
nonuniqueness of the general initial-boundary value problem.

The solutions (3.7) of equation (2.1) with coefficients (3.5) are !l9!
singular since bo is positive. They do not go to 0 as t t O.
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1NTEX3RATION OF
(0

J F(x)J (ax)Jl(bx)dxo a

Shunsuke Takagi
U.S. Army Cold Regions Research And
Engineering Laboratory, Hanover, NH

INTRODUCTIon

. Infinite integrals involving Bessel functions under the integral

sign are of extreme importance in many branches of mathematical physics.

We encountered several types of the integrals of the form

i~ the study of the viscoelastic deformation of an ice plate floating

on water (Ref. 1).

When F(x) is an even function and has only algebraic singularities

(Le. poles and branch points), the integral (1) can be transformed.

as shown later, to a contour integral. Therefore. when poles only

constitute the singularities, the application of the residue theorem

enables us to integr~te it.

There are many other more complicated integrals that cannot be

simply integrated by use of the residue theorem. A simple example is

a variant of (1) where F(x) has a branch point. A more complicated

example is the one where F(x) has an essential singularity; the appli-

cation of the contour integral is out of the question in this case.

We may hope, however, that all these difficulties can be resolved by

use of Barnes' integral representations.

Watson states that "the Bessel function under the integral sign

may be replaced by the contour integral of Barnes' type involving

Gwnma functions. and the order of the integration is then changed; this

very powerful method has not previously been investigated. in a systematic
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manner" (Ref. 2, p. 383). Watson (nef. 2), however, does not develop

this method to cover all the needs arising from practical application.

He rather imposes severe restrictions, as shown later, to avoid am-

biguous applications.

It is shown in this paper that his restrictions may be removed.

However, as shown later, different forms of Barnes' representations do

not necessarily yield one and the same result. Watson's restrictions

extricate us from this trouble, although they prohibit the application

of this method to a majority of the interesting cases.

The obj ective of tlds paper is to present the difficulties we have

encountered, and to solicit theoretical mathematicians to solve them.

It is my hope that the mysteries enshrouding the application of the

Barnes' representations may be lifted in the near future and unreserved

use of them will be guaranteed.

CONTOilli INTEGRAL

The following theorem gives the conditions that enable us to

transform (1) -to a contour integral.

Theorem: Let F(Z) be an even function of z that has only algebraic

singularities (1. e. poles and branch points) in the upper half plane of

the complex variable z ~ x + iy. Then,

J (bx) dx
o

(1)

00

=; fF(Z) Hil)(az) Jo(bz) dz , when a>b

_00
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where'" means the inteGral passing through the contour sho"\-''Tl in Figure

1. 'l'he value at a"'b is given by the average of the limits approached

from the region a>b and the region a<b.

o
-<X)
Figure 1.

+co
The contour of integration of (2) and (3).

Proof: Use of the relations

and

J (-3 ~ = J (Z)o . 0

shows that
00

tfF(Z) ni")(az) 31(bz) dz

_00

The right hand side of (a)

00

~ f F(z) [Hi")(az) + Hi
2

)(az)] 3
0

(bz) dz

o (a)

is equal to (1).

Use of the aS~lwtotic formulas

H
( 1 ) ( ) /;2 i [az - (31f / 4) ]az ...., -- e
1 lfaz

and
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shows that the left hand side of (a) is equal to (2). The case a>b

is thus proved. The case a<b can be similarly proved.

The value at a~b may be computed by use of Barnes' theory as done

by Watson (see Ref. 2, p. 402). But this case is not essential to

our analysis; we may not try to go 'through the complete analysis of

this case in the present paper.

Example 1.
CO)

f
o

=ker'a berb - kei'a beib + ~ when a~a

=ber'a kerb - bei'a keib when a~

(4 )

Proof: When a>b, the integral (4) transforms to I(a>b) defined below,
CO)

I(a>b) ~ tJ~ H1(1)(az) J (bz) dz
l+z 0

_(lC)

rri/4 3rri/4 dThe poles in the upper half plane are e , e ,an zero. Therefore

. (rri/4) . (3rri/l~) rriI(a>b) ~ rr~ Res e + rr~Res e + :2 Res(O)

Note that the pole at z = 0 is enclosed with a semicircle, as shown in

Figure 1. Thus 'We find:
-3lTi

. rrilTt.

I(a>b) = rri 1 -4-
H(l) (ae4 ) J (be4 ) +"If 1 0

-¥ 3'lTi 31Ti

+Tfi 1 H(l) (ae-4-) J (beT) +
~ 1 0

rri (_2i)+ -.
2 1Ta

Substituting the relations,
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n _

and wi
JA(xe~) = ber x - ibei x

v 0 0

we find

I(a>h) • ~ +~I(kerla + kei1a) berob + (ker1a - keira) beiob)j

Using the relations

ker1x + keilx = 12 ker~x

and

- kerlx + kei1X = I:2kei~x

I(a>b) reduces to (5), where we have dropped the suffix zero.

When a<b, integral (4) transforms to I(a<b) defined below,

I(a<b) =~ f1:Z4 J1(az) H~l)(bz) dz
_ClO

~ ni/4 d 3ni/4The poles in the upper half plane are e an e • Therefore

I (a<b) -_ • R (~iI4) 'R (3 1fiI4)
1f~ es e + 1f~ eS,e

Thus we find:

Substituting the relations,
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-----------

1

2 (ker x + ikei X)
lri 0 0

~ (ker X - ikei x)ni 0 0

x
w' w'I 2
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WI(X) = berx + i beix

3lri
H(l)(xe4 ) =

o
3lri-4-

Jl(xe ) =

lri
H(l)(xe4 ) =

o
'IIi

31 (xe
4 ) = - (berlx - ibe:lx)

I(a<b) ;

Formulas (5) and (6) are continuous at a=b. To prove this, note that

we find

Using the relations

-ber
l

", + beilx = 12"bei'x

I(a<b) reduces to (6), where we have dropped the suffix zero.

and

are the solution of

~le real part of the Wronskian



givcsthe continuity of (5) and (6) at a=b.

BAlmES' IN'l'EGRAL REPRESENTATIONS

Proposition 1.

Bar'nes'

J (x)
v

representations of J (x),
• V

00,&

J
.l v+2s= -.L r (-s) (2 X) ds

2ni . r (v+s+l )
_00,&

is valid for v > 0 and x > O. When \1=0, the order of the integration

and the substituting x=o cannot be c:xchanged.

Watson's restriction (Ref. 2, p. 192) that R(v»O and x>O may

be loosened, although v is restricted in this proposition to real

nwnbers in order to state ~;imply the strange property at x=O. Note

that Watson prohibits the use of (7) for J (x). 'This restriction is
o

removed here.

Proof.

We consider

L = lim
1 Is\-+<>o

v+2sxr (-s) ("2)

r(v+s+l)
s (a)

where O,;;",x<oo, in order to show that the contour integral derived from

(7) by drawing the semicircle of infinitely large radius to the right

of the imaginary axis amounts to zero.

Changing -s in 1'(-3) to +$ by using the formula

r (-z)
-1T=

1'(Z+1)8i111TZ
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where z is a complex number that is neither zero nor positive, L
1

becomes

\)+28
(x/2)
r(v+s+1)

Letting

ie
S ::; 1'e

we get

lim
.t"-+<>'

I 11M,..,,,,(ins -ins) . 1 nl? Isine Isinns; = lim 2 l'~ e ~e = 11m 2 e
1"~ 1"~

(c)

Substituting (c) and the asymptotic expansions of r(s) and r(v+s+l)~

(b) becomes

where

AI-e 11 (d)

Al = (V+2S)lO~+ (V+28+1) - nrlsinOI:", (S~)logs - (V+S1')log(V+S+I)

which we transform to

A ( ) ex 1 \)+8+1 I
1 = V+28 log 2$ - (V+S+t)log 8 - TIPlsinS + 1

Taking the real part of Al~ we find

v+2rcose
L1 ::: lim (~~) exp[r(28sin8- 1rlsinel) + 1]

1"-+<>0

Because

26sine - nlsinel ~ 0

and
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v + 2rcos e ~ 0

in the range

'IT 'IT
--<6<;­2 = ~~ 2

it is proved that

£1 = finite when v ~ 0 and e = ;

= 0 in the other cases.

Therefore we can conclude that Barnes' theory by use of (7) is

valid for v ~ 0, unless, when \1=0, the order of the integration and

the substituting x=O is exchanged.

Proposition 2.

Barnes' representation of H(l) (x),
\I

-R(v}+ooi 2

1
1 \1+ B

= 2;i r(-v-s)r(-8)(~a) ds
-R(v}_ooi

(10)

is valid for Ie.rg (-iz) I ~ ~ and 'IJ .:. O. The order of the integration

and the SUbstituting z=o cannot be exchanged.

Watson's restriction (Ref. 2, p. 192) that larg (-z)I<~ is made

exact in the above, although v is restricted in this proposition to

real numbers in order to state simply the strange property at z;O.

Note that Watson prohibits the use of (10) for real values of s. This

restriction is removed here.

Proof. we consider

I ( ) ( ., iZ)'IJ+28 I£2 =lim r -\)-8 r -8)'-~ s
181-+0:1

(a)

in order to show that the contour integral derived from (10) by drawing

the semicircle of infinitely large radius to the right of the imaginary

axis amounts to zero.
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Changing the negative arguments of r(-v - s) and r(-8) to the

21T
r (1+\)+8) l' (s)lim

lsi-+«>

positive arguments by use of (8), L
2

becomes

(1) v+2s
-'/,Z

2
sin1T (V+-s""")-s-i-n-1Ts-·

Using (9) we get

lim Isin1T(v+s)sin1Ts! ~ lim i e21Trlsinef
r-+o::> r-+«>

Substituting (c) and the asymptotic expansions of 1'(1+V+8) and r(s),

(b) becomes

A

Ie 21L
2

~ 21T lim
1'-t<x>

(d)

where

1.-Z 1
A

2
= (v+2s)log~ + (v+28+1) - 2n1'lsinel - (v+s+l)log(v+s+1) - (8-2)logs

which we transform to

( ) -ize
A

2
= V+28 log~ 1 v+8+1 I I(V+S~)10g s - 21T1' sine +1 (e)

Taking the real part of A
2

, we find

fr
'

~.,I J v+21'cos8 2rB+l
L2 = 21T ~:: \~-L-J e

where

B = - arg(-iz) sine + 8sine -1Tlsine!

Because

B~O

and

v+21'cose ~ 0

in the range -1T~28<1T,it·is proved that
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1'inite when R(v) = 0 and e 11= 2

= 0 in the other cases.

TI TI
If V = 0 and 8 = 2 or - 2' L

2
may be finite but never becomes infinite.

Therefore, we can conclude that Barnes' theory by use of (10) is

valid for v~O and larg (-i11~~, unless the order of the integration and

the substituting z = 0 is exchanged.

We will show in the following examples that indiscriminate use of

Barnes' integral representation is dangerous.

According to the theorem stated above, we have the indentities,

Q.E.D.

00

I~ Jl (ax) J (bx) dx
l+x 0

o

when a>b, and

00

00

00

(n)

(12)

when a>b. The ranges of integration in these integrals are restricted

on real axis; the circular contour in Figure 1 is not considered.

Substituting the respective Barnes' representations on the right

hand sides of (11) and (12), and changing the order of integrations,

yields the results in Example 1, as will be shown in Example 2.

Substituting the respective Barnes' representations on the left

hand sides of (11) and (12), and changing the order of integrations,
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does not necessarily yields the results in Example 1, as will be ShO~1

in Examples 3 and h. The difference is caused by the pole of Hil)(cu;)

at x;:::O.

The correct result must be the one found by substituting the

respective Barnes' representations into the right hand sides, because

the integrals on the left hand sides of (11) and (12), considered as

functions of a and b, are continuous at a=b. This condition is not

satisfied by substituting the respective Barnes' representations into

the left hand sides, but into the right hand aides, as shown in Example 1.

Example 2.

We shall show in the following that use of Barnes' theory to

integrate the right hand sides of (11) and (12), which are expressed

here as

and

I(a<b)

C!QIf 1;:::..- -.. 4 J (aJ;)
2 l+x. 1

...1Il

yields the same result as given in Example 1 by use of the contour

integral method.

Using Barnes' representation (10) and (7) for H1(1) (ax) and Jo(bx),

respectively, and changing the order of integration, integral (13)

becomes
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I(a>b) ~ 1
2

1

2
2.1T 'Z.

. b 2t
00'Z. l'(-t)(-) .

dB 2~i f.f(t+l)
2

Kl
-crJ'Z.

dt¢-
a

(a)

where
00

j xl+2S+2t
--4- dX +
l+x

£

lim
£-+0

The last term on the right hand side of (a) results from the existence

of the pole at x = 0 in the integrande of (13). The residue at this

pole is evaluated by drawing a semi-circle as in Figure 1.

Changing s to B-1 in the first integral in (a), I(a<b) becomes

I(a>b)

%

f.
-cot.

(c)

where
00 -£ -1+2s+2t

j
-1+2s+2t

i
i

X = lim x dx+ lim
x dx ;.; (d)

1 l+X4 4
e:-+o e:-+o l+x

£

Changing x to -x in the second integral of (d), Xl becomes

I. )\ joo -1+2s+2t
Xl = \l+e'Z.1T(-l+2S+2tj x l+x4 dx

o

Letting ~~x4 , (e) integrates to
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f -2in(S+t) t ) ( )
K

l
= t- ~-e r{;t r1 _ s;t

which transforms to

n ( 2in (S+t))
K1 = '4 l-e

1

Sin~s+t) (r)
. ni (s+t ) n

~ - ~1Te cos 2(s+t)

Substituting (f),

where

(c) decomposes into

I{a>b) = i(I I212

products of single

+ I2I0 + ~
integrals,

(g)

00£, ( . ) -1+28-rr f _!:E. ins
I

1
2 2 e r(-8+1) ds=2rri .-----"i' (8+l) nS

sin -
-WI.- 2

- ". =l (jJ2:i ".t
2 r \2, ds1

2 = 2rri ) . 2 TIt
(r(t+l» sin -

_oo~ 2

. ( . ) -1+28.
!!. ] _!:E. ens r(-s+l)

1
3

2 2 dS== 2ni . --r(S+l) nS
-CXYf,

cos""2

1T ooi (!)2t . t- - - ~1T

I 2 f 2 e
4= 2ni (f(t+l»2

-ooi

The integrand of II has a single pole at s = 0 and 8

a double pole at 8 = 2n, where n = 1, 2, ... Let

~ 2n+l and

f(8 )
(

. )-1+28 .
~a ~ns

-2" e
=

r(s+l) res)
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Then I
l

becomes

00

I l = -~a + L:
n=l

(_l)n fl (2n) _ TT
2

L: (_l)n f(2n+l)

n=o

The first, second, and third terms on the right hand side of (i) are

the residues at s = 0, s = 2n, and s = 2n+l, respectively. Substi-

tuting (h), (i) becomes

I l = -2iker'a

where

ker'x

00

4n-l
+

00

n=o

The integral I
2

has a single pole at t = 2n, where n = 0,1,2, ...

Counting the sume of the residues, I 2 becomes

I
2

= ber b

The integral I
3

has a single pole at s = 2n and a double pole at

s = 2n+l, where n = 0,1,2, .... Counting the sum of the residues.

I
3

becomes

I
3

;= -2i kei'a

where
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00

kei'x = ;: L:
n=o

(2n+l)I(2n+2)1 -

The integral 14 has a single pole at t = 2n+l, where n = 0,1,2, •..

Counting the sum uf the residues, 14 becomes

14 = - bei b

Substituting the above values of 1
1

, 1
2

, I
3

and 1 4 into (g), we can

show that I(a>b) in (13) is given by (5).

Using Barnes' representations (1) and (10) for J1(ax) and H~l) (bx),

respectively, and changing the order of integration, integral (14)

becomes

11(a<b) =---------
(2ni)2 I

-CCYl-

(j )

where
1+2s+2tx---,.---- dx
l+x4

Integration of K
2

yields

Substituting

. in(s+t) . TI( +t)K2 = - ~TI e Sln 2 s

(k), (j) decomposes into products
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where
(~r28

insTI CXY'J e

I
l

2 f= 2iri dSTIS
-=2- 1'(s+2)1'(s+2) cos 2

2 ooi (-1:~) 2t int(fr)
f.

e
I

2 = ~iTi dt

(1'(t+11~ iTt
-=2- sinrrt sin-

2

-n """... (~Y+2S ins
2 r e

I
3 = 2ni ds

.,;
(1'(8+1)1'(8+2) 'TTe

-""1; sin--;:::-
c.

and

!!-/(~-
2ni

wi.

f.
-00'[..

iTIte

. t iTtSlnn cos2
dt

Substituting I l , I2 , I
3

, and I 4 in the above we can show that

I(a<b) in (14) is given by (6).

Exa.mple 3.

We shall show in the following that use of Barnes' theory to

integrate the left hand sides of (11) and (12), which are expressed

here as
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J ==J~ Jl(ax) J (bx) dx
l+x 0

o

yields

1 beih kei' aJ = ber (- + kerr a) -a

when a>b

= ber'a kerb - bei'a keib

when a<b

(16)

The result (16) for a>b does not agree with (5). The result (17) for·

a<b agrees with (6). The difference is caused by the pole of H(l)(ax)

at x=O, which is not counted in (15). The meaning of the value

of (16) is not yet known.

We shall use a single Barnes' representation for the product

J l (ax) Jo(bx) in the example. Two expressions are available (Watson

2, p. 148).

co

= FL
n=o

<Xl

(a)

b
2

F(-n, -n-l; 1; :2)
a

where F( , ; ; ) denotes a hypergeometric function. Both hypergeometric

functions are polynomials of nth order.

Use of (a) yields the integral for a<b, as shown in the following.

The integral (15) for this case will be denoted by J(a<b) in anticipation.
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Transform (a) to a Barnes' representation:

ooi bx 2s+1

~f r(-8)('2) F(-S'
21f'Z- . r (8+1 )

_001.

-8. 2· a
2

) d8, , 2
b (c)

Substituting this into (15) and changing the order of integration, we

have

00 (b) 28+1
J(a<b) = ~ -l. jr(-s )'2.

b 21f'Z- r(8+1)
_ooi

(
2\ 100

2s+1
F -S, -8 ; 2 ;a2) ds x 4

b / 0 l+x
dx

We must examine the asymptotic behavior of

1+8 2 8
(1-E;;) (1-a2~)

b

2
2'~), 2 1

b ] -8-1

= r(-S)1;(2+6)f '
o

F(-8, -8;

2
a

For - <1 , we have2 =
b

because we assume R(s) ~ O. Therefore we have

F(-S. -6; 2;
for any values of s

a
2

) < 12 =
b

when a<b. To prove (e), note that

(e)

1f ,-s-l(1-, )1+S d, = r (-s) r (2+6)

o

Letting x4 = ~ , the second integral on the right hand side of (d)

is integrated to:
00 1T

f
2s+1 4"x 4 dx = 1TSl+x cos-

o 2

529



Letting x4 :: E; , the second integral on the right hand side of (d)

is integrated to:

28+1
x

1+x
4

'IT

"4dx ::--
'ITScos­

2

Thus (d) becomes

2
n

-""4
J(a<b) - ­- 2ni

where

ds
ns .

COS?ln1TS

(r)

(b)2S+1 ( 2)
; F -S,-S;2;a

2
f(S+l) b

(g)

For a~ we may apply the residue theorem to integrate (f). The

intCf~rand of (r) has a single pole at s;:::2n and a double pole at

S :: 2n+l, where n :: 0,1,2,... . Thuf; (r) intc·grates to

J(a<b) :: fr L: (_l)n f
1

(2n) + ~ L: (-l)nfi (2n+l)

n=o - n=o

Substituting (g), (h) becomes

( )
1T b 1

J a<b = -4 K
1

+ log- - M + - N2 121

where
b 4n+l

00

(_l)n(2") 2
Kl = ~ L: F(-2n,-2n; 2· ~)

(( 2n) l )2
,

b2
n;:::o

4n+3
CX) . b 2a L: (_l)n(2")

;,.'- ~

£1 F (-2n-l;"t.2n-1; 2; ~)
:: b ((2n+1)l)2 b2

n=o
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CIO f1}b4n+3
n-

a "" (-1) \ ')
M = - ) I - - F(-2n-1,-2n-1;

1 b (2n+1)!)2
n=o

2a
2; 2")1jJ(2n+2)

b

2]2' ~), 2
b s=2n+l

2
Exp;essing F(-2n, 2n; 2; ~) as a polynomial, Kl becomes

b
2

w 4n+l 2n

'" b L: 1 ~a)2k+lK = L..J (_l)n(_) -
1 2 ((2n-k)I)2 k !(k+l)!

n=o k=o

Dividing the second series into two series with regard to even integers

and odd integers, K1 becomes

00 4n+l

+L: (_l)n(~)

n=l

n

I: (2n-2P+l)~(2P-l)!(2P)!
p=l

4P-l

(Ii)

Letting n = p+q, Kl becomes

ClO

K
l

=~ (-It
£..J (2p) 1(2p+I) 1
p=o
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Thus we get

K1 = bei'akerb + bcr'a beib

2
Exptessing F(-2n-l, -2n-l; 2; :2) as polynomial, L1 becomes

(j )

n=o

2n+l

;.:
k=o

1
2k+l

a(:-)o

Dividing the second series into two series with regard to even integers

and odd integers,

00 4n+3 n
L ::: L: (_l)n (~) '" 1:..-- _

1 n=o 2 - f:; ((2n+1-2p)! )2(2p)! (2p+l)!

lip+l
(~)
b +

4p+3
(£)
b

Letting n = p+q , L
1

becomes

L =
1

00

p=o
(2p ) ! (2p+1 ) r

00

L:
(-l)q b 4q+2

--'---"-'--- (-)
q=o ((2q+l)!)2 2

+

00

p=o

(-l)P 4p+3
...,...----<~r...--_.__ (~)
(2p+l)!(2p+2)! 2

b 4q
(-)
2

Thus we get
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L
1

= bei1a beib - ber'a berb

Next we compute

o =[~ F(-s _so 2· a
2

)]
1 oS '" 2b s=2n+l

which is

2kj(~)

b s=2n+l

By differentiation,

2k k-1

(~) L
h=o

1
2n+l-h

Thus we find:

2n+l

L
k=o

'Where

k-l

Pn,k= - 1jJ(2n+2) + L 2n+~-h
h=o

which transforms to

P k= -1jJ(2n+2-k)n,

Thus 'We have
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2n+1

L
k=o

1jJ(2n+2-k) 2k+l
(~)
b

Dividing the second series into two series with regard to even integers

and odd integers,

00 n
1 n b 4n+3

-M +"'- N = - '" (-1) (-) "121 ~ 2 ~
n=o p=o

ljJ (2n+-2-2p )

1Letting n =p+q, -Ml + 2 Nl becomes

___-.:lljJ~(.=.2n:...::..+_.::l:....-_=2PC_.!_) (~)4p+3

( ( 2n-2p ) ! 2 (2p+1 ) ! (2p+2) ! b

00

-Ml + ~ Nl = - L:
p=o

( 2p ) ! (2p+1 ) !

b 4q+2
(-)
2

00

""" (-1 )p
- L.J (2p+1) ! (2p+2 ) !

p=o

00

~ (-1)qljJ(2q+l)

~ (2q) ,2
b 4q

(-)
2

00

= - bei'a L: (beib)4 +2 ljJ(2q+2) +
q=o q

00

+ ber'a L: (berb)4qW(2q+l)
q=o

where (beib}4q+2 and (berb}4q denote the (4q+2)th and (4q)th.order

terms of the series of beib and berb respectively.
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Substituting (j), (k), and (1) into (i) we find that J(a<b) is

equalto (17).

Use of expression (b) of J
1

(ax) Jo(bx) to integrate (15) yields the

integral for a>b, which will be denoted by J(a>b) in anticipation.

Transform (b) to a Barnes' representation:

. 28+1
1 ~1, r(-8) (~)

; 2.i f. r (8+2 )
_00,[;

b2
F(-s,-S-l;l;;2) ds

a
(m)

SUbstituting (m) into (15), and changing the order of integration, we

have

J(a>b)

• 2s+1

1 fOO1' r (-.s H%)
= 2~i : r(S+2)

-cot,

00

b2 ) dSr: .:;:28+
4

1F(-s,-S-l;l; dx
a2 l+x

o

(n)

It can be proved that

IF(-S, _S_l;l;b:)1
a

< 1=

for a~. Following the similar procedure to the previous case, we get

ds
'ITS •

cos"2s1nils

where

It integrates to
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where

(0 )

n::::o

b
2

F(-2n, -2n-J.; 1; "2)
a

'4n+3
"" n a

L
(-1) ("2) r

£2;:: I
(2n+l)! (2n+2)!

n=o

b2
F (-2n-l, -2n-2.; l; a2 )

and

b2
F(-2n-l, -2n-2; 1; :2)(~(2n+2)+~(2n+3))

a

[
a b2 ]is F(-s, -s-1; 1; a2 )

s=2n+l

Following the similar procedure to the previous case we find

K2 = bei'a berb + ber'a berb

L
2

= bei'a beib - ber'a berb

[
a b2 ]as F(-s, -s-l; 1; 2)

a s=2n+l

2n+l

=2:
k=o

(2n+l-k)! (2n+2-k)! (kl)2
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1
-M + - N
222

= berb l:(ber1a) (1jJ(2q+2) + 1jJ(2q+3)) -
q=o .4q+3

- beib L (bet'a) (1jJ(2q+l) + 1P(2q+2))
4q+lq=o

Substituting these formulas into (0), we find that J(a>b) is given

by (16)

Example 4.

We shall use in the following two Barnes' representations to

integrate (15). Using (1) for both Jl(ax) and Jo(bx) and changing

the order of integration, (15) becomes

. 1+2s

j
«>1.-r (_S )(~)

J = 1 2
(21Ti)2 . r(s+2)

-«>1.-

00

dtJ
o

1+2S+2tx
--.--dX

1+X4 (a)

Two cases occur in accordance with the order of integration. We

shall show that, when integration with regard to t, or s, is performed

first, J yields (16), or (17), respectively. These integrations will

be denoted by J(a>b) and J(a<b), respectively, as in the previous

example.

To prove this, let

s + t = u

in (a). Assmning that integration with regard to t is performed first,

we transform (a) to
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. 1+2u

f
OOt r( -u) (£) ClCl

J = 2;i f(U+2)'L- F duj
-<>=>i 0

where

1+2ux. 4
l+x

dx (c)

ClCli
2t

F ::..l.;. r r~ t-)) r~u+2) r~ (-ab) dt
2~~ r -u r(u-t+2 fTt+lT

·_ooi

We shall show that F in (d) transforms to

b2
F ~ F(-u, -u-l; 1; --)

a2

To prove (e), apply (8) to r(u+2) and r(u - t+2) in (d), and we

have
coi

1 -'IT' ( dt
F = 2ni r(-u)r((-u-l) '_. f(t) ~ln~t

••«>t

where

(d)

(e)

(f)

f(t) • r(t-u)r(t-u-l)_

r2(t+l)

On integration (f) becomes (e). Then J in (0) i6 eQ.ual to J(a>b). The

other caee can be proved similarly.

In the following we I'lhall carry out the integration of~J(a>b).

In thi~ ca6e we first perform the integration

dt
sinn!

(g) ,

which is found by ~ub~titut1ng
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£
1+2s+2t:r:

dx =
'IT

'4
1T(S+t)

cos 2

into (a). Because s is imaginary, the integrand of (g) has a single

pole at t =n, where n = 0,1,2, ...• Thus (g) becomes

co

M=~L
·n=o

1

(
n1T 'ITScos - +-)4 2

Dividing the above series into the series of even integers and odd

integers, M becomes

'IT /
M = '4 \berb _1__ + beib

'ITScos-
2

1 ). ns
sln"2

Substituting this result, J(a>b) becomes

2
J(a>b) = 'Il'4 (Nlberb + N2beib)

where

ooi
1+28

(£)
N1

1

1~
2 ds

=
- 2'ITi r(S+1)r(S+2) sinns nS

cos"2"

and

ds
• • 'ITS

sln7TS Sln2

The integrand of N
1

has a single pole at s = 2n and a double pole

at 8 = 2n+l, where n = 0,1,2, ..•. Counting the sum of the residues,

N1 becomes
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(ker'a + 1)
a

The integrand of N
2

has a double pole at s = 2n and a single

pole at s = 2n+l, where n = 0,1,2, ...• Counting the sum of the

residues, N
2

becomes

N
2

= - 4
2

kei' a
7T

Thus we can conclude that J(a>b) is given by (16).

Similarly we can find that J(a<b) is given by (17).

Example 5.

We shall show in this example complicated variants of (1) whose

integration procedure is not obvious.

The most complicated integrals we encountered in the study of

viscoelastic deformation of the floating ice plate (Ref. 1) are:

00

-ul(x)t 4f '(-u
1I l = I (l-e ) Jl(ax) Jo(bx)x dx

J IDTif
0

and

00

-u2(x)t

J
.-u2 4

Ie. = (l-e ) Jl(ax) Jo(bx)x dx
Iv(x)

0

(18)

Here viscoelastic

n2
E

• = (1 1E2)
n1 1

E
E2

= El + E
2

constants E
l

, E2 , n
l

, and n2 are used to define
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D(x) = 4 2 4r( I-E)h (l+x )-1] +

4
+ 1 + T - ID(x)

0.
1

(x) TX=
2(E+x

4)

4
+ 1 + T + ID(x )_

0.
2

(x) TX=
2(E+x

4)

and t is time. Integral 1
2

has essential singularities at the roots

4
of x = -E, because

But II does not, because

lim
4

X -,-E

Both integrals simplify, as shown in Reference (1), to

-x1-e
x

(20)

and

-:x:
l-e

x c

where



[1 41ElA
1

1 + T - ;(1+1 )2=-2E

- 41E 1'A
2 = -h [1 +1+Al+1 )2

2E

and

f(x) =~

Parameters AI' A2 and T are in the range

o < Ie < 1 < A= 1 = = 2

Integrals II and I
2

, as shown by (20) and (21), respectively,

are continuous at a=b --- a condition that must be satisfied by the

results of the integrations. However, it is not clear whether the

direct substitution of the Barnes' representations of (7) for Jl (af(x))

and J (bf(x)) does or does not yield the results satisfying this con-
a

dition. Change of Jl(a!~)), or .Jo(bf(x)) , to respective Hankel

functions may be achieved, not by simply extending x to -x but by

choosing a complicated contour; I am not sure, however, if I should

dare to do this. I am in trouble!
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SINGULAR PERTURBATIONS IN HEAT
CONDUCTION AND DIFFUSION PROBLEMS

John F. Polk
Fluid Mechanics Branch

Applied Mathematics and Sciences Laboratory
U.S. Army Ballistic Research Laboratories

Aberdeen Proving Ground, Maryland 21005

ABSTRACT. In one-dimensional problems of diffusion or
heat conductlon where discontinuities or steep gradients occur
in the initial or boundary conditions a singular perturbation
analysis can give accurate estimates of the solution when numeri­
cal methods prove inefficient or inadequate. In fact the discon­
tinuities can be exploited in the singular perturbation analysis
to obtain an asymptotic series representation of the solution.

Several different problems of increasing complexity can
be explicitly solved when the boundary and initial data are
given in piecewise polynomial form: a.) infinite region or pure
initial value problem b.) semi-infinite region and c.) finite
region.

The approximate methods also apply to the case when no dis­
continuities occur in the prescribed data or its derivatives.

1. INTRODUCTION. It is frequently stated in regard to
heat conductl0n and dlffusion problems that "discontinuities are
immediately damped out". In some problems arising in engineering
however this view is too over-simplified to be realistic because
the damping out process itself is the heart of the problem. Typically,
such problems exhibit a behavior usually referred to as "very steep
gradients" which present severe difficulties to attempted solution
by numerical techniques; viz., very small mesh sizes and excessive
roundoff errors. We shall examine in this paper how such problems
are most suitably handled by a singular perturbation analysis.
The analysis will show how very accurate estimates of the solution
can be obtained with just a few easily calculated terms.

We first wish to give an example of the type of problem
we have in mind, namely, heat conduction in rifle barrels. We
assume circular symmetry and independence of the axial coordinate.
The phenomenon is then described by the heat conduction equation in
radial coordinates:

The radial coordinate varies from r o = interior radius of
the barrel to r 1 = exterior radius. The initial and boundary (radia­
tion) conditions are
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u(r 10) = ambient temperature

u(ro,t) + hour (ro1 t) = propellant gas temperatures at time t

u(rl,t) + hlur(rl,t) ambient temperature

where ho and hI are heat transfer coefficients. The coefficient of
thermal diffuslvity, a, for mild steel is 0.12 cm2/sec. A typical
length scale in this prob.1em is rl -ro which is on the order of 1 em.
A typical time scale is the duration of the phenomenon which is on
the order of 1 millisecond. In non-dimensional form then the coef­
ficient a is on the order of 10- 4 . Although one usually thinks of
metal as being a good conductor this problem is one in which the
conductivity may be considered as very poor due to the short dura­
tion of the heat pulse.

An analysis of the behavior of solutions of equations of
the general form

ut = £[a(x)uxx + b(x)ux + c(x)u]

has been undertaken by the author and explicit formul~ for such pro­
blems have been obtained through singular perturbation techniques.
However, in the present paper we shall deal only with the diffusion
equation

u
t

= E:Uxx
due to space limitations. The behavior for this case is simpler than
the general case but typical. At first only the Cauchy problem (infi­
nite rod) will be analyzed. Later it will be shown how extensions to
mixed initial-boundary problems are easily accomplished.

There has been some treatment of this type of problem in the
literature - see, for example references [1]-[4]. All of these only
develop the first order approximations however and require more strin­
gent conditions on the data than we have found necessary. In particu­
lar the case where discontinuities arise between the boundary data and
the initial data has not been analyzed. The present treatment is very
direct in its approach and all of the approximations will be explicitly
obtained. The precise effect of discontinuities in the data and its
derivatives will be clear from the asymptotic representations obtained.

The results presented here are only partial and give an indica­
tion of the general approach. A full development for the more general
case will be available in the author's thesis [5] which is currently
being completed at the University of Delaware.

2. Cauch Problem for the Diffusion Equation. Consider the
following pro lem ln t e reglon - 00 < x < 00, < t < T:

(1)

(2)

(3)

limitt~O u(x,t) = ~(x)

Iu (x, t) I~ M exp [a.x2]

for t > 0

wherever ~(x) is continuous

for 0 < t < T

and - 00 < x < 00



where M and ~ are positive constants.

The existence and uniqueness of the solutions of this type
of problem are thoroughly discussed by A. Friedman in [6]. In the
present discussion we shall be more concerned with the computational
aspects of the problem. However, in passing, we should make a
few remarks about those more fundamental questions: a.) The
existence of a solution is guaranteed provided 4£aT < 1. b.) Con­
dition (3) is sufficient to guarantee uniqueness. It is much weaker
than the usual boundedness condition specified for such problems
from physical reasoning. c.) Condition (2) should be replaced
by a more general requirement if ~(x) is only locally integrable.
However we will consider only ¢(x) which are continuous except at
certain isolated points where it has well defined jumps. In such
cases condition (2) is sufficient. d.) Condition (3) applies
in particular to ¢(x) = u(x,O).

The solution of problem (1), (2), (3) can be written in
the well known integral representation form

00

u(x,t) =J F(x-y,Et)q,(y)dy
-00

where F(x,t) : I~TIt exp [-x 2/4t].

This integral is not always easy to evaluate explicitly
or even numerically so we proceed with a singular perturbation
analysis to obtain easily calculated solutions. We wish to
emphasize here that the singular perturbation technique can be
extended to more general equations where the fundamental solution
is not known a priori.

3. The Functions Hn , Hn* and vn ' In this section we
introduce certain functions which will be convenient later in
the discussion.

Define the initial value functions hn(x)
n = 0,1, ...

{
xn/n!forx > 0

hn (x) = 0 for x < 0

and

and h* forn

h~ (x) = hn (- x)

The functions H (x,t) and H*(x,t) aTe then defined as the (unique)
solutions of Ut

n= uxx Whichnsatisfy the growth condition (3) and
the respective initial conditions

Hn (x , 0) = hn (x)

H~ (x , 0 ) = h~ (x)
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Let the two auxiliary functions E(x,t) and F(x,t) be

E(x,t)

F(x,t)

= l/Z erfc (-x/14nt)
1 2= t41Tt exp [-x /4t]

where co

2 f 2erfc (y) =fi exp [- z ]dz

Y

It is easy to show by induction that ~ satisfies the
recursive formula

Ho = E

HI = xE + 2tF
1Hn = n (xHn _l + 2tHn_Z) for n > Z

Another useful formula for Hn is

1 [Vn E + ZunF]Hn = nT

where un and vn are polynomials in x
formulas

Uo 0 Vo = I

ul = t vI = x

vn = x vn-l + 2(n-l)t

un = x un-l + 2(n-l)t

and t defined by the recursive

and

E*(x,t) = E(-x,t)
F*(x,t) = -F(x,t)

then we can show

H~ = E*
Hf = xE* + 2tF*

H~ = *[xH~_1 + 2tH~_2]

H* = A [v E* + 2u F*]n n. n n

The proof of all of these is routine so we omit it. The
importance of the recursive relations is that they reduce all
calculations to the evaluation of the well-known functions
exp[-x2] and erfc(x).
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We note here that the polynomials vn(x,t) coincide with
the heat polynomials discussed by Rosenbloom and Widder in [7].
Because vn(x,t) is a solution of the diffusion equation Ut = uxx
and has initial values vn(x,O) = xn then

vn(x,t) = n!
Let L$ = $xx' Then

(5)

(6) vn(x,t) =
n'
E

k=O

[Hn(x,t) + HA(x,t)]
another convenient representation is

Lk(xn) t k

k!

Note that n'
= 0 for any

where n' is the smallest integer not less than n/2.
can be replaced by any larger integer since Lk(xn)
k > n/2.

4. Outer Solution. The solution of (1), (2) and (3)
is assumed to have the asymptotic representation

where

and
+as £ ~ 0 for k = 0,1,2, ...

By standard procedures one easily can show that the only reason­
able choice for the asymptotic sequence is ck(£) = £k. The
equa tions for the uk are then obtained by substltuting into (1)

(uo)t = 0

(uk)t = (uk-I) xx'
with initial conditions

Uo (x, 0) = ~ (x)

uk(x,O) = 0

(k > 1)

(k > 1)

(7)

These are easily solved when ~(x) is sufficiently differentiable,
k k

uk(x,t) = t L kt ex) (k ~ 0)

The n-term outer expansion of solutions to (1), (2), (3)
is therefore given by

u(x,t) = ~ (€t):!L
k

~(x) + O((Et)n+1)
k=O
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where Lk is the operator L applied k times.

This representation is very advantageous for computations
since it reduces the problem of finding u at a point (xo,t) to
the evaluation of ~ and its derivatives at x = xo ' The error
is of order (fEt)2n+l provided ¢ has 2n+l continuous derivatives
in a neighborhood (xo - h, xQ + h) where h > > /£t. This claim
is not difficult to prove uSIng the integral representation for
u(x,t) and growth properties of F(x,t). We shall not include a
proof here.

In passing we note that for more general operators such
as Lu = a(x) uxx + b(x) Ux + c(x)u the outer solution of ut = £Lu
is given by the exact same formula, (7). In fact, this representa­
tion is a formal solution if n = 00 and is a true solution whenever
the series is defined and convergent for all x.

5. Interior Layer. In the usual singular perturbation
problem the outer solution fails to satisfy some of the data
specified in the original problem and an inner solution is derived
to correct any discrepancies. In the present case however the
outer solution satisfies the prescribed data, given by (2), so
an inner solution is not required for the usual reason. This is
a rather unique feature of the pure initial value problem under
consideration and should not be expected in general. In contrast,
if we were concerned with a mixed BVP-IVP problem then the usual
difficulties would arise.

There is, however, another source of singularities in the
behavior of a perturbation solution, namely the presence of dis­
continuities in the prescribed data and its derivatives. It is
apparent that this type of difficulty occurs with the representation
(7) since any discontinuity in ¢(x) or its derivatives are propagated
into the solution domain along the sub-characteristics x = constant.
Solutions to the diffusion equation are known to be infinitely
differentiable except at the boundaries but (7) does not have
that property. We are therefore led to the need for "interior
layers" to correct the outer solution in the neighborhood of sub­
characteristics. In general there can be many points at which
¢(x) or its derivatives up to a given order do not exist. Our
analysis will assume only one such point, namely x = xo ' but
the results are easy to extend to the more general situation
because of the linearity of solutions of (1).

There is another motive for studying the effect of discon­
tinuities in the initial data for the Cauchy problem which is really
the more important reason. In Section 8 we shall show how mixed
boundary-initial value problems can be transformed into Cauchy
type problems with discontinuous data. The results we develop
now will thus be directly applicable to that case and will lead
to a proper understanding of the influence of the boundary data
on the solution.
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To proceed with an analysis of the Cauchy problem we
assume that is some neighborhood (xo - h, Xo + h) ¢(x) satisfies
jump conditions in the form

(8) ¢(x) =

for x > 0

for x < a

2n+lwhere the Taylor remainders Rn and R~ are O(x ) as x + O.

To understand the behavior of u(x,t) near to the sub­
characteristic x = 0 we introduce an inner variable of the form

and an inner solution

(9) D(x,t) = U(IE x + xo ' t)

which is assumed to have an asymptotic form

(10)

k > 1

Rewriting equation (1) in terms of x gives the equation for
U as

(11) 1 2
U

t
= t: (--) U- -

r€ xx

Substitution of (10) into (11) leads to the following equation
for Do

(12 ) (Uo)t = (Uo\<x
Initial conditions for U(x,O) follow from those for u(x,t):

U(x,O) = u(lEx,O) = ¢(IE~)

then from (8)
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(13) U(x,o) =

Zn k ~
1: (ak/k!) (lEx) + RZn for x > 0

k=O

Zn
L (bk/k!) (lEx) k + R~n for x < 0

k=O

This indicates that the proper choice for the asymptotic
sequence in 6k (E) = (I€)K and the asymptotic series for U is

U(x, t) = Uo (x, t) ... lEu1 (x, t) + e:Uz(~, t) + ••.••••

Substituting this expression into (11) and comparing with
(13) we obtain equations and initial conditions for Uk:

(Uk)t = (U )~-k xx

(ak/k! )
o_k

for x > 0x
Uk(x,O) =

-k
(bk/k! ) x for x < 0

Solving for Uk in terms of Hk and Hk* we have:

and

(14)

(15)

Relating u and U by (9) we then setx = x - Xo and obtain

u(x,t) = U (x/fE, t)

2n
= L (Ie)k [ak Hk (x/I€, t) + bk H~ (x/lE,t)] +

k=O

+ O(IE)2n+l) as E ~ o.

This representation has been derived only in a formal way
but it can be rigorously justified for Ix - X o I < h. We now wish
to indicate how (15) can be written in the form of the "outer
solution" (7) plus a correction term (which we call an "interior
layer") to account for the discontinuities in ~(x) or its derivatives
at x = xo . Letting dk = ak - bk (15) can be rewritten
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2n
u(x,t) = ~ (I€)k ak [Hk(x/l€, t) + H~ (i/I€,t)]

k=O
2n

E (lE)k dkH~ (x/ri, t) + O((1€)2n+1)
k=O

2n
= L (I€)k (ak/k!) vk(i/~,t)

k=O

2n
~ dkH~ (x/I€, t) + O((1€)2n+1)

k=O

But Vk(x/IE, t) is a solution to ut = tUxx and similar to (6) we
have

k'
E

i=O

hence

Because k ~2n implies k' ~n, k' can be replaced by n. Then
reversing the order of the summation gives

n 1
t i (e:1) i

2n xk ]u(x,t) = L (rr) [ I: (ak/k! )
i-a . k-O

2n
CI7)k ((1t)2n+l)I dk H~ (x/It, t) + 0

:::t k=a
n

(Et)iLi
2n xk]= I (1/ i : ) [ L (ak/k:)

i=a kilO

The expansion (13) of the initial value function can be
used to simplify this for x > Xo
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n (et)i Li (<j> (x)) 2n
(~)k H~(16) u(x,t) = L: - L: dk (x/~, t). ,

i=O l. k=O

+ 0 ((IE) 2n+1 where x = x - Xo

By similar derivation the corresponding formula for x < Xo
can be obtained:

(17)
n

u(x,t) = L:
i=O

(et)i Li (.I.()) 2n k
....::.....----::.-.--.......,-..:....!.-.'I'~x--:!....&- + L: d

k
(IE) H

k
(x/~, t)

1! k=O

In this form it is apparent how the inner solution given
by (16) for x > Xo and by (17) for x < Xo is just the outer solution
plus a correction for the interior layer. An analysis of the
functions Hn and Hij would show that Hn(x,t) becomes neglible faster
than any power of ll/x) as x ~ -00 and similarly H~(x,t) becomes
neglible as x + +00. The correction terms in (16) and (17) are
therefore neglible except in a neighborhood of the subcharacteristic
x = xo '

6. Solution for Piecewise Pol nomial Initial Data. In
previous sect10ns asymptot1c ana1ys1s was use to er1ve approxi­
mate solutions to (1), (2), (3) assuming that £ was small. In
this section we show how an explicit solution in series form can
be obtained for the same problem, regardless of the magnitude of
£, when ~(x) is a piecewise polynomial (with no continuity required
between the pieces). Any initial value function can be approxi­
mated, as accurately as necessary by such functions and the maximum
principle for parabolic equations guarantees that no greater error
is thereby introduced into the solution. If Et is small the solu­
tion can be considerably simplified by dropping insignificant terms
and in the limit we obtain the same asymptotic representations as
before - (7), (16) and (17).

The solution will be obtained by writi~the function <j>(x)
as a combination of the functions hn and ha and then expressing
u(x,t) as the same combination of Hn and Hn . We shall suppose
there are points xi such that -00 <••••• < x-2 < x-I < X o < xl < •••••
< 00 and polynomials Pi(x) with

Hx) = Pi (x) in [x., x. 1)'1 1+

The closed bracket is a convenience here since the value of ~ at
anyone point is immaterial. The index ~ is assumed to vary over
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some index set I = J U K where J = {l,2, ... } and K = {0,-1,-2, ... }.
These sets may be finite or infinite but are non-void and we assume
that only finitely many xi are contained in any bounded interval.

For k ~ 0, let

nCk) = max {degree (Pi): 1 = 0, 1, ..... ,k}

n(-k) = max· {degree (Pi): i = 0, -1, -2, ,-k}

The representation of $(x) has jumps at the points xi so
we define

dr: = 1 [p~n)(x') - p~n)(x.)] for x. ;. + 00
1 l1T 1 1 1-1 I 1 -

Let the coefficients of the polynomial Po(x) be denoted by
that is

nCo)
po(x) = E

i=O

(18 )

The initial values can now be
nCo) .

.Cx) = E a.xI + E
. 1 J'EJ1=0

expressed
n(j)

(E d~ h (x - x
J
.))

J nn=O

satisfy
and h~(x -xk)
of (1) we

(19 )

This series is well defined since for any given x only a fi­
ni te number of terms are non- zero. (Recall hn (x - x j ) = ° if
x < Xj and hA Cx - xk) = 0 if x > xk.)

. The functions Hn(x ~ ~'?Et) and H~(x -Xk,€t)
equatIon (1) and have the InItIal values hn(x - x·)
respectively. Using the linearity of the solutio~s
may therefore write a formal expression for u(x,t)

nCo) n(j)
u(x,t) = E a.. v. Cx,et) + l: l: dn

J
. Hn(x-x

J
.,€ t)

i=O 1 I jEJ n=O

E
kEK

When J and K are finite this representation is not merely
formal but actually solves (1), (2), (3). When J or K is infinite
the representation is still the real solution of the problem under
certain general growth conditions on the polynomials Pi(x), For
this purpose we make the following definition:
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The family of functions· {Pi ex) : ie I = J U K} is said to
be outward bounded by f(x) with respect to the points· {xi: ieI=JuK}
if

IPj (x) I ~ f(x)

IPk ex) I ~ f(x)

for all x > Xj

for all x < xk+l

of £t.

of &t.

{jEJ: x • Xj :II Oem)}

{keK: x - Xk lit 0 ({et) }

Theorem: The formal series (19) converges for O<t<1/4e: a
to the solutlon of (1), (2) (3) when ~(x) is given by (18) provided
{Pi(x): iEI = JUK} is outward bounded by 2M exp[ax2] with respect
to the points' {xi: ieI} for some M, a ~ O.

Proof: Omitted. The argument is fairly straightforward
using the lntegral representation of u(x,t) and the properties
of the fundamental solution F(x,t).

7. Asymptotic Analrsis. The solution (19) of problem
(1), (2), (3) in general WIll contain an infinite number of
terms. However most of these are neglibible even when e:t is not
small provided x - Xj and x - xk are large enough.

This becomes apparent from studying the asymptotic behavior
of Hn and HA which can be summarized as follows:

a.) for fixed x > 0 H~(x,tt)~O faster than any power

b.) for fixed x < 0 Hn(x,&t)~O faster than any power

c.) for x > 0 and x ~ o(ret) H~(x,et) is O(lttn).
d.) for x < 0 and x ~ o(Itt) Hn(x,tt) is o(f"&tn) .

In the representation (19) of u(x,t) we assume without loss
of generality that Xo < x < Xl (otherwise the indexes can be shifted).
It follows that x - x·-< 0 for jeJ and x - xk > 0 for k~K with
equality only possib16 for k-O. Using a.) - d7) we may conclude
that terms Hn(x -Xi ,Et) and Ha* (x- xk,e:t) are neglible as e:t~O
unless X - Xi and x - xk are (ret). Therefore we define the
sets J and ~ by

t t

J •e:

K •£

These sets must be finite since only finitely many x· and xk are
contained in any bounded interval. For asymptotic approximations
to U(k,t) as E • 0 we can restrict the index sets J and K to J
and K. Furthermore, for N·th order accuracy the terms Hn and€
H~ caA be neglected if n > N, because of c.) and d.). The repre­
sentation (19) can therefore be written as
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(20) u(x,t) =
N
1:

i=O
a.. V. (x,e: t) +

1 1

N
E E

'EJ n=iOJ €

dn H* ( t) + Rk n X-Xk'€ N
N
E

ncO
1:

kEKe

where the remainder RN = Q(/Et)N+l as €t + O.

The sets J and K are monotone decreasing with respect to
£ (in the set theOretic sense) and eventually reduce to at most
one element. The resulting form of (20) is then equivalent to
the inner solution representations (16), for x - Xl = O(~), or
(17), for x - xo = O(ie:t) and (7) otherwise.

8. Mixed Boundar¥ - Initial Value Problems. One of the
techniques for solving mlxed boundary - initial value problems
is to convert the problem into an appropriate pure initial value
problem for which the fundamental solution is known. The solution
of the new problem is then shown to satisfy all of conditions of
the original problem. This approach is particularly useful in
the present case since we have developed all of the necessary
tools for solving the Cauchy problem.

Unfortunately there does not seem to be any standard re­
ference for this technique and we do not have space here for
discussing the matter. Therefore we shall only indicate the
proper initial value problem which can be used to solve certain
mixed boundary - initial value problems. Greater detail will be
included in [5] and is being submitted for publication in a
separate paper.

The following list is valid for the equation ut = £uxx '

A. Semi-infinite domain, zero boundary condition
Mixed BVP-IVP: u (x, 0) = ~(x) x > 0

u(o,t) = 0 t > 0

Corresponding IVP: u(x,o) = ~(x) x > 0
u(x,o) = -,(-x) x < 0

B. Semi-infinite domain, zero initial condition
Mixed BVP-IVP: u(x,o) = 0 x > 0

u(o,t) = hn(t) t > 0

Corresponding IVP: u(x,o) = 2h~n (x/IE)

555



C. Finite domain, zero boundary conditions

Mixed BVP-IVP: u(x,o) = hn(x) 0 < x < Xo
u(o,t) = 0 t ;) 0

u (xo ' t) 0 t :> 0

Corresponding IVP: u(x,o) hn (x-2k xo) - h~(x-2k xo)
for (2k-l) Xo < x < (2k+l)x

0

D. Finite domain, one non-zero boundary condition

Mixed BVP-IVP: u (x, 0) = 0 0 < x < Xo
u(o,t) = hn(t) t > 0

u(xo,t) = 0 t > 0
00

(x~jXO)Corresponding IVP: u(x,o) = Z 1: h*
j=O 2n

00 x-2k Xo- Z 1: hZn (r;. )
k=O

These correspondences combined with the theory developed in
previous sections for the Cauchy problem allow us to solve the
heat conduction problem in a finite rod explicitly when the data
is given in piecewise polynomial form.

8. Conclusions. Basically what we have developed in this
discussIon IS an alternative to the Fourier method for solving the
diffusion equation. The present method, based on asymptotic analysis,
is accurate for small et and is particularly advantageous when
any sort of discontinuities are present in the initial and boundary
data. In general very few terms are needed to give accurate
estimates of the solution. To contrast this with the Fourier approach
one should note how many terms are required to resolve a discontinuous
function into sines and cosines with reasonable accuracy. Although
the higher frequency modes tend to cancel out and become insigni­
ficant with time this is not helpful in describing the early develop­
ment of the solution.

In our opinion the present method is a far more natural approach
to diffusion problems when steep gradients are present. It also
has the advantage of providing formulae rather than numbers for des­
cribing the physical behavior.
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SAMPLE SIZES FOR MISSILE
IN FLIGHT RELIABILITY DETERMINATIOI~

Edward F. Southworth
Army Missile Test and Evaluation Directorate (ARMTE)

w'hite Sands Missile Range, New )'(exico SSCC2

ABSTRACT. This paper presents an unusual approach to determining
sample sizes required to adequately measure reliability. This approach
has been tailored to the specific problem of measUl'ing the in flight
reliability of guided missiles. It should also have application to other
types of problems. The paper includes the rationale used to develop a
measure of the probability of a successful reliability test. It then de­
rives equations for calculating the probability of a successful relia­
bility test. Finally the paper presents plots of the probability of a
successful reliability test a.s a function of sampl.e size for a wide range
of reliability testing goals.

1. INTRODUCTION. As the name suggests. the primary function of the
Army Missile Test and Evaluation Directorat~ (Affi~TE) is test and evalua­
tion of Army gUided missile systems. A small, but imp?rtant, part of
this function is the determination of the reliability of these systems.
Of particular concern is the determination of the in-flight reliability
of the missiles themselves. There are three reaso:J.s for this concern.

a. First, the wlit cost of most guided missiles is very high. In
addition, missiles are produced in large quantity. Many more missiles
are produced than other portions of most missile systems. for the same
reason that many more rounds of ammunition are produced than the guns
that fire them. Initiating large scale production of a specific missile
configuration requires a major decision. Naturally, the decision makers
want assurnace that missile performance, including reliability, will be
satisfactory before committing large sums to missile production.

b. Second, most modern missiles are configured as certified rounds.
The missiles are sealed at the factory. ?ney are not designed to be
maintained in the field. The field army is neither trained, equipped,
nor authorized to maintain them. Any problems discovered after they are
manufactured can only be corrected by very expensive retrofit programs.

c. Third, there is a lot more than money involved. Mistaken esti­
mates of missile performance contribute to mistakes in the tactical doc­
trine developed for optimum use of our weapon systems. Large discrepa1­
cies in our estimate of in flight reliability could lead to serious mis­
calculation of our defense posture. Such miscalculations can be tbe
cause of tactical blunders.
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Since measuring missile in flight reliability is so important, why
not just measure it? The answer, of course, is that missile in flight
reliability can only be measured in very expensive missile firing tests.
These tests are costly because of the high cost of the missiles which
must be expended, because of the high cost of the range support requirelt .•
and because of the hie;h cost of the targets needed for many of these
tests.

It is obvious that an adequate measure of missile in
lity must be obtained with a minimum number of firings.
justifies more complex test planning techniques than are
in designing reliability experiments.

flight reliabi­
The situa.tion
usually employed

There is one other W1usual feature about this problem. .ARM'l~ is re­
spo:lsible for measurLlg missile in flight reliability, but ARMTE is not
responsible for makilg any decisions on the adequacy of this reliability.
ARM'.ru is not involved. i.1 determining acceptance or rejection criteria,
buyers' ris~';.s, or sellers' risks. l<'or this reason, the standard opera­
tiag characteristics curves have limited value.

This paper will first discuss Affi~TE's reliability testing goals. It
will then define a measure of the effectiveness of test designs in achiev­
ing these reliability testiag goals. Finally, it will present families
of graphs which plot the probability of a successful reHability test as
a function of sample size for a vlide variety of reliability testing goals.

2. RELIABILITY TESTING GOALS. The Arm;/ Missile Test aad EvaluaUod
Directorate has three typef; j)f missile in flight reliabEity testing
goals. The first goal is to demonstrate that reliability is satisfactory.
If we can accomplish that, all parties are happy and the Army obtains re­
liable missiles. To do this we must produce COrlVi,lc1ng evidence that
reliability equals or exceeds wnatever level 1s accepted as satisfactory.

The second goal is the opposite of the fi.rst. If we are unable to
d.emol1strate that reliability is satisfactory, the possibility that re­
liab~lity falls short 0:' t:1e sati.sfactory level must be investigated.

The third goal is addressed if we ca:mot accomplish either of the
first two goals. If we cannot demonstrate that reliability is satisfac­
tory, and we also fail to demonstrate that reliability is not satisfac­
tory, then our goal is to demonstrate that reliability is near the satis­
factory level. Our ability to accomplish this goal is dependent upon the
effectiveness of the test design used to accomplish the first two goals.
If the test design provides a high probability of detecting small diffe­
rences between actual reliability and the satisfactory level, it is also
capable of demonstrating that reliability is very near the satisfactory
level. In such a test, failure to demonstrate that reliability is either
satisfactory or unsatisfactory provides high confidence that it is near
the satisfactory level. On the other hand, test designs which can detect
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only iarge variations from the satisfactory reliability level can only
define the value of reliability wit~in broad bands of uncertainty.

\

3. A MEASURE OF TEST DESIGN EFFEcrIVENESS. Now that .ARlviTE' s re­
liability testing goals have been described, a measure of the effective­
ness of test designs in achieving these goals will be defined. A test
which achieves ARMTE's reliability testing goals must satisfy two criteria.
First, it must produce a useful conclusion about reliability. The con­
clusion which the test produces can satisfy anyone of the three relia­
bility testing goals described in paragraph 2, above, to be useful. Se­
cond, the conclusion the test p~oduces must be a correct conclusion.
Based upon these criteria, the probability of a successful ARMTE relia­
bility test is defined as the probability that the test produces a con­
clusion which satisfies one of ARMTE's reliability testing goals, multi­
plied by the conditional probability that the conclusion is correct.

4. DETERMINING THAT THE CONCLUSION IS CORRECT. A major part in pre­
dicting the probability of a successful ARMTE reliability test is deter­
mining the probability that a conclusion about reliability is correct.
A good measure of the correctness of a conclusion about reliability is
the statistical confidence which can be placed in that conclusion. Given
the results of a reliability test in which there were p successes in n
trials, it is easy to calculate the statistical confidence that actual
reliability is greater than or equal to the satisfactory level. It is
also easy to calculate the statistical confidence that actual reliability
is less than the satisfactory level.. Statistical confidence is calculated
using the binomial distribution. The equations for calculating statisti­
cal confidence using the binomial distribution are well known. However,
ready reference to these equations is needed for the further development
of this paper. Tnerefore, these equations, and their rationale will be
briefly reviewed.

Figure 1 shows the equations used in calculating confidence and pro­
vides some examples which explain the significance of the confidence
values calculated.

Equation 1 is merely a statement of the most basic equation of the
binomial distribution. It states that the probability of exactly "i"
successes in lin" trials, if the prObabilithof success in each trail is
lip ", e§U8ls n factorial, times p to the it power, times (l - p) to the
n -, it power, divided by .i factorial, and also divided by (n - i) fac­
torial. 0 factorial .is defined as equal to 1.

The second column under examples shows the probability of achieving
various numbers of successes in 25 trials if the probability of success
in each trial equals .85. For example the probability of achieving
exactly 21 successes under these conditions equals .2110.
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ii:.quation 2 is basic also. It is a stateme,1t of the cumulative pro­
bability from the bi::.omial distribuLio c

• It shows tnat the probability
of s or :nore successes Ll ;1 'cr.i.e.ls, if the probability of successes ill

each trial e'lu.als '9, is e'luaJ. to the Gum of the probability of s successes
in ~1 trials, plus the probability of 5 + I successeEi ill n trials, and so
0:1 UIltil tne probaoility of r. successes in n trials has oeen ii1ch.deJ..

The third colW1Ll ll.:.ldcr examples shows the cumulative probability of
'" or more successes 1:: 2) trials, if the proo<lbility of success in each
trial equals .-35, for various val'Jes of's. Each cumulative probability
L.l C01Ulllil 3 equals the S'c1ln o:f 'Lae i,Hiividual probe-bUities in colWJL 2
assocla ted with that ;Wlnoer or :nore successes. For exarrrple, the pro­
bab':lit;y of 21 or more su.ccesses ur.der these cOi1ditioi.:; is .6821. 'I'ilis
is the sum of the prooabillty of exactly 21 successes, plus tile proo:-t­
bilit; of exactly 22 successes, aild 80 0,1 u,l1il the probatilit;;,c of c.)
successes in 25 trlals has bee," added.

EluaLio,: 3 requires a :Little expla,:atlo;l. It is used to calcula:;e
.coi.r.:.de:lce that reliabilit~,' equal.s or exceeus s..J!Je c:rlteriGL. 11 this
case, tne cr l. ceria,. is -cae Gatisfac-:', ~)r:l level for :1., fli[;nt r811.ao :l.lEJ.
'l'lle far 18ft t.erm L: tile cquat:..~o,l tIC (1' ~ (Pc) I "mea,lS "corlfider,ce lhat
rel.Laoll.it~/ equals ar exceeds cri teriD.l". T'ie :;;;/rriool "pe If debigr:.atcs
the pro'c,abillty ci' GilCCeSG1.1 each tr1al whicil satisfieSLhe erHer..!.:).'.
It is L",terestj.,"C; to :lo'~e thEl.t the ee,lter &"(l right terms of eq,uat.Loii 3
arc the cor.rpleme.•ts of the corres310ddint; terms of eClUaticxi. 2. B'luatiull
2 G.e:~.Lle:3 the prooabLli~s that s or r:10re su~ceSSCG would OCC'-lX in l! ra11­
Q:)[J1.\"rials if the pro'babilit;y of cucceC8 il ea<::h tr~cl equaL; ,\:.,". Lqua­
t·:'J,. 3 ::'5 the exact OTi)()~,.:.tc. It ucf'Les t 11e co:;fLdci~ce Vie ca:1 esta'olir.;:1
\;,la-: 0. gi.'/e .. rC:;i.:.lt c.:u L.ot Oi.:CL:.l' :frora r~mJ.()r,l sa:npUq;. Thls cOl1fidei.cc,
as Ghow~, equals unity minus the probabiLtty that the res~.u.t would occur
from random sampling. Equation 3 is used to calculate confidence 'that a
given test result demonstrates that reliability equals or exceeds a satis­
factory level.

ColWlll.1 !j., under examples) shows the confidence that reliability equals
or exceeds .85 if we experience s successes ia 25 trials. As you would. ex­
pect, each value in col~~ 4 equals illlity minus its corresponding value in
column 3.

E'luation 4 is used to calculate confidence timt reliability is less
than the criterion. It is very similar to e'luat:i.on 2. Tne only difference
is that .I i If is summed :from s + 1 to n in equation 4 waereas "i II is surruned
from liS II 'to :1 in equatio'l 2. Equation 2 is used to determine the proba­
bility of s or more successes in n trials if the probability of success in
each trial equals p. The principal of equation 4 is that this same pro­
babIlity is the cOl1fidence that reliability is less than p if we exper­
ience less tilan s s\:ccesses in n trio.ls. This can most easily be illustra­
ted by example. Column 3 lli1der examples shows that the probability of 21
or more successes in 25 trials if p equals .85 is .6821. Therefore if we
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experience fewer than 21 successes in 25 trials we can have a confidence
of .6821 that p is less than .85. Column 5 under examples shows this con­
fidence value for the case in which we experience only 20 successes in 25
trials. In fact every entry in column 5 is numerically equal to the next
higher entry in column 3.

There is one more point that I would like to discuss before leaving
Figure 1. The far right column under examples shows the point estimate
for reliability for each number of successes in 25 trials. As you can
see, the point estimate is merely the numerical equivalent of the number
of successes divided by the number of trials. It is important to note
that whenever the point estimate exceeds tIle criterion for reliability
then confidence that reliability exceeds criteri.on is greater than con­
fidence that reliability is below the criter1on. In the eXfJ1;tples, the
criterion is .85. When 22 successes are obtained in 25 trlnls the point
estimate is .88. In this case confidence that reliability exceeds .85
is shown as .5289. Confidence that reliability is below .85 e~uals only
.2537. On the other hand, if there are only 21 successes i.n 25 trials
the point estimate is .84 which is below t he criterion of .85. Note that
when the point estimate is below the criterion there is greater confi­
dence that reliability is below the criterion than the confidence: that
it is above. This example illustrates a rule that applies to all cases.

5. PROBABILITY OF A SUCCESSFUL TEST: The first four equations on
Figure 2 are merely repetitions of the four equations just discussed on
Figure 1. They are repeated to lend continuity to this discussion. They
prOVide an important link from the familiar to the unfam~liar represented
by equation 5. Equation 5 is the first Wlusual feature to the approach
presented in this paper.

The left side of eq,uation 5, "Pst (n, r, :Pc) 11, means "probability of'
a successful test" if the sample size equals lin 11, the actual reliability
equals "r ll and the probability of success in each trial which satisfies
the criterion equals "llc 11. The right side of the equation is a double
summation. It's similar to a double integral except that it applies to
sample sizes which can only be whole numbers rather than continuous
variables. Equation 5 is the method used to predic~ the probability of
a reliability test which successfully accomplishes our first goal of
demons~rating that actual reliability equalS or exceeds the satisfactory
level. In other words, it predicts the probability that we can success-
f 11 d th " ,I d " IIU Y emonstrate at r equals or excee s :Pc'

The right side of equation 5 is divided into two major parts. 1be
part which immediately follows the first summation sign calculates the
probability of achieving exactly s successes in n trials if the proba­
bilityof success in each trial (1. e. reliability) equals IIr ". You can
see that this part of the equation Is in the same form as equation 1 Which
is used for the same type of calculation. The last part of equation 5
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calculates confidence that reliability equals or exceeds the criterion,
"Pc If, if we experience exactly "s If successes in Ifn If trials. You can see
that this part of the equation is in the same form as equation 3 which
is used for the same type of calculation. The t'i'i'O parts, together, equal
the probability of achievili.g "s If successes in Ifn " trials, fiul tiplied by
the confid.ence provided by "s" successes 5.[1 "n rr trials that reliability

1 d th 't· If"equa s or excee s .J e crl erlon, pc.

The remaining portion of equation 5 is the first sWl'll":lB.tion sign.
This summation sign shO'i{s that the calculatio:1 described above is repeated
for different values of "s" and that the results are added to obtain the
probability of a successful. test. All values of "s" are used which equal
or exceed the sample size multipled by the criterion, "p ". Earlier I
pointed out that all values of "s" which equal or exceedCthis quantity
contribute to our confidence that reliabiliLy is satisfactory.

FIGURE 2

EQUATIONS
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Figure 3 shows one of the consequences of this relationship. TILtS
Figure lists the values of "s" which cO!ltri"oute to our confidence tnat
reliability is satisfactory for various numbers of samples and values of
criteria. It is evident that there are more values of liS" which contri-
b t 1 ··· d d tl .t . II iI. d .u e as samp e Slze J.S ltlCreaSe an as le crl erlon Pc' lS re ucea.
Each condition under Vlhich an additional value of "S" is introduced into
the calculation is marked by a pip on Figure 3. Each time an additional
value of "s fI is introduced, there is a discontinuity in the graphs "HIllen
show the probability of a successful test. Tne result is that these bTapQS
have a sawtooth characteristic to them. Tnc next figure will demor.strate
this characteristic.

Figure )+ shows a family of graphs Which plot the probability of a
successful test as a function of sample size. Each graph LS applicable
to the goal of demonstrating that reliability is equal to or greater than
.9). The bottom graph is a plot of the probability ot ac1) :evlng th.is
goal if the actual probability of success in each trial (p ) equals .95.
In other ,wrds, actual reliability eCluals the criterion. ~e other graphs
apply to cases if; which actual reliability exceeds the criterion. Graphs
are provided for reHab.i.li ty values of .96, . r;n, .}0 "and •99.

There are several features of these gTaphs which req,--~ire explanation.
~"irst, they a re plotted as though they are continuous 'fu.nctions. This
was done to connect together successive points associated with the salnc
actual probability of success in each triaL Obvio"J.sly, the only pol:1ts
on tile graphs that have any meaning arc those associated ~'lith w'holc '.l.Ull­

bel'S correspouding to discrete sample sizes. Second, the sawtooth shape
of these graphs has already been ex-plaincd, but i'urt~ler explanati.on would
probabl;y be helpful new that you can sec thi2 characteristic. The pile.lo­
mena, loosely referred to as discol\t:L:1uLties, oecuJ: at f.>ample sizes \·rL1:ch
are multiples of 20 if the goal is to demonstrate that reliability is
equal to or greater than .95. The reason is that the probability of
achieving 19 or more successes in 20 trials is far greater than the pro­
bability of achieving 19 successes in 19 trials. Similarly, the proba­
bility of achieVing 38 or more successes in 40 trials is greater than the
probability of achieving 30 or more successes in 39 trials. At every
multiple of 20 samples the experiment can accomodate one additional fail-
ure without driving the point estimate below .95. Hence the sawtoothed shape
of these graphs. There is a third feature of these graphs that req,uires
explanation. The graphs show that there are conditions in which the pro­
bability of a successful test decreases slightly as sample size increases
slightly. This phenomenon is very disturbing to most people. It defies
intuition. However, it actually happens. If the actual reliability is
greater than the satisfactory level, the long term trend is always to in­
crease the probability of a successful test with large increases in sam-
ple size. However, the sawtoothed shape of these graphs causes small
intervals where the graphs have negative slopes when the actual relia-
bility is only slightly greater than the satisfactory level.
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Figures 5 thru 11 are similar to Figure 4 except that they apply to
different levels of satisfactory reliability.

They cover goals of demonstrating that reliability is equal to or
better than .90, .85, .80, .75, .70, .65, and .60.

Figure 12 adds a sixth and final equation to the group. Equation 6
is the co~~terpart to equation 5. Equation 5 is used to determine the
sample size required to achieve our first goal of demonstrating that re­
liability is satisfactory. Equation 6 is used to determine the sample size
required to achieve the second goal of demonstrating that reliability is
unsatisfactory. The right side of equation 6 is divided in~;o two major
parts, as equation 5 was. The part which immediately follcws the first
summation sign calculates the probability of achieving exactly s successes
in n trials if the probability of success in each trial (i. e. reliability)
equals r. You can see that this part of the equation is in the same form
as the corresponding part of equation 5 and equation 1, which are used for
the same type of calculation. The last part of equation 6 calculates con­
fidence that reliability is below the criterion, "Pc ", if we experience
exactly s successes in n trials. You can see that this part of the equa­
tion is in. the same form as equation 4, which is used for the same type
of calculation. Tne two parts, together, equal the probabilit;y of achiev­
ing s successes in n trials, multiplied by the confidence this result pro­
vides that reliability is below the criterion, Pc'

The first su.rnrna.tion sign in equatiqn 6 shows that the calculation ,j ust
described is summed from s = 0 to the highest value of s which satisfies
the relo,tionship that s is equal to or less thaIl the number of trials
multiplied by the satisfactory level of reliability. In other words, all
values of s are summed for which the point estimate of reliability is be­
low the criterion. Thus, all values of s are summed Which contribute con­
fidence that reliability is unsatisfactory.

Figure 13 is similar to some of the previous figures except that this
one shows the probability of demonstrating that reliability is less th~1

the criterion of .95. As you can see, the graphs on this Figure also have
sawtoothed shapes. They also peak out at s&nple sizes which are multiples
of 20 and then drop when the sample size is increased by one. On these
graphs, also, the prevailing trend is for the probability of a successful
reliability test to increase as sample size increases. Again, though,
there are some exceptions.

Figures 14 through 20 are similar to this Figure except that they
apply to different levels of satisfactory reliability.

They cover satisfactory reliability levels of .90, .85, .80, .75, .70,
.65, and .60.

5. CONCLUSIONS.
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FIGURE 12

EQUATIONS

1. P (i, n, p)
, i ( )n - i= n. pI - p
i! (n··i)!

where O! = 1

2.

n

L ' i (1 )n - i
P (i ) _ n. p - P, n, p -

i - ., ( i) ,- S 1. n - •

n n , . i (1 ,n - i
3. C (r ~ pc) '= 1 - L p (i, n, Pc) == 1 - L E-~l?_c___."':'-p e J

i! (n - i) !
i == s i = S

n n

L ~ n: p
i

(l _ p) n - i
4. C ( r .(Pd P (i, n, pc) ==

__ .. c _ .... c·___

i = s + 1 i + 1
i: (n - i) := s

5. PST (n, r, Pc)

n )--,
I i (1 . ,n - i :L ~_. P.c...._--=-.P.c- J _

i==s 1: (n-i):
~ •...J

6.

r:.77

n

L
i == s +



a. It is practical to plot the probabilities of achieving a variet:.r
of reliability testing goals as a direct function of sample size.

b. Such plots are of value to the test uesi~ler because they provlue
him a direct view of the trade off between his goals a'1d their cost lri
additional samples.
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DOVAP BEST ESTHfATE OF THAJECTOHV

Robert II. Turner and \'li.llia.m S,'\gee

US Army \\'hi te Sands ~·lissilG Ranr,e. J';~l 88002

ABSTHACT. The DOV1\P Best Estirr.ate of Trajectory (BET) is a new
developmei1tln traj Getory data reduction at 1\:::;~·1R. The DOVAP BET provides
the capabilit)' to prodlH~e high quaIl ty trajec.tory solutions one to three
days after a flight test. It is batch processing type of 1:rajcctory sol\!"
tion - it estimates all trajectory points simultaneously. This type of
solution inherently results in a very large hut sparse set of equations.
In the DOVAP case this set of equations is block tridiagonal and is
solved by an LU matrix decomposition. The solution for the trajectory
from the LU decomposi tion must be iterated since the ori ginal DOV;\P
equations ore nonlinear. NUlTIerici11 procedures, program structure, and
data editing procedures used in the DOVAP BET program are described.

L INTRODUCTION. The DOVi\P Best Esbmate of Trajectory (FET)
program 'Pj''O''VldeS the abili ty to produce hi gh "luaUty t raj cctory solutions
one to three days after a mission. ~,lore specifi1o:ally) a DOVAP BET can bc
provided in 2-3 work days with nomal avaihtbility of digitized DOVAP
tapes. Upon spccia 1 request and nrr:mgcl'1ents by the Range User, a DOV/\P
BET can be provided in one \wrk day. Real··thiC digitizing :md central
recording of DOVAP data would make 1~·2 day DOVA!' trajectory solutions a
standard item.

The DOVAP BET is a batch processor ~ it estimates the entire
trajectory at once. The editing of observations) ',Yhich takes care of

both wild data and bias, is entirely autonatic. The DOVAP batch pro­
cessor,since it solves a set of nonlinear equations, requiTes a st,,:"t­
ing guess for the trajectory. The pl'oiJ,raT'1 \·!il1 accept trajectory p,uesses
from several sources. TIlese guesses may often be several miles in eTraT
without affecting the convergence of the oatch processor. The guess{;d
trajectory must be reasonably smooth, i.e. J it must be free fron spikes.
Sources of guessed trajectories presently used in the DOVAP BET prof'1'[Jn
are radar, a nominal traj ector)' or nigh t path) or a sequence of con­
stant points. Since the input to the DOVAP BET program is a merged data
tape, the most common source of a guess trajectory is radar which is
inputted from the same merged tape. 'llie usc of radar p,UCS5CS does not
slow the production of a DOVi\P BET if the central record :facility for
radar is used. The radar data need not be c::tlibratcd for use as a tra­
jectory guess. The DOVAP BET progrmiJ automatically despikcs the racial'
observations before use in constructing a trajectory guess.

The DOVAP measurements are rcfr'action corrected by the method des~

cribed in Appendix A. Since the DOVAP tracking ranges nre relatively
short and the DOVAP BET program autOlT,atically rejects DOVAP observations
~len the tracking clevation is below n preset rnininum) an approximation
to flat Earth ray tracing equatiof;s has been found to provide a sufficiontly
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accurate elevation refraction correction for use in the method of
Appendix A.

2. DOVAP HEASURE:IENT r'lODEL. The DOVAP measurement system is a two
way CIV doppler system which measures a loon ranf,c change or equivalently
an average loop range rate of a target beth'een consecutive sampling times
ti and ti+l. 'TI1C normal sar.rpling intcrval is 50 msec. A DOVAP instrumen­
tation path consists of a trans)"1.ittcr station and usually ten or more re­
ceiver stations. In addi tion the target being tracked carries a frequency
doubling transponder. The DOVAP receiver station receives both the ref­
erence frequency from the transr.1i ttcr and the frequency doub led signal
from the target transponder. A frequency comparison of the two signals
and the addi tion of a 5KHz bias signal is performed at the recciver. The
resulting signal is converted to digital form by counting the doppler cycles
over a 50 I11sec time interval. TIle resulting biased doppler measurement
is

(1) H(t. 1) :: 14.72194 s(t.,t. 1) + 50278 + N. 1
1+ 1 1+ 1+

where s(ti,ti+l) is the refraction distorted change in loop range over the
50 msec interval. The loop range is defined as the sum of the range from
transmitter to target and the range from target to receiver. Ni+l is a
measurement error which is assumed to be random \,:i th zero mean. Thus,
except for refraction, for which a correction is applied, DOVAP measure­
ments are considered to be unbiased. Subtracting the bias 50278 and
dividing by 14.72194 yields the modified DOVAP measurement ~l"(ti+l)

(2) M#(t. 1) = set. t. 1) + N. 1
1+ 1, 1+ 1+

The correction to this measurement for refraction is discussed in Apt'cndix
A. After correcting for refraction we have the measurement model for the
a th re ce i ve r •

(3) Z (t.,t. 1) :: g (x. ,x. 1) + v (i+l)a 1 1+ a 1 1+ a

where gCl,(xi,xi+1) is the loop ra.'1ge change from ti to ti+l and the arglUTIcnts
Xi and xi+l indicate the dependence on the position coordinates at these times.
Xi is the position vector of the target in the launcher coordinate system.

The loop range change is modelled as follows. Let (xT,YT,zT) be the co­
ordinates of the electrical center of the ground transmitter in the launcher
coordinate system. Also, let (x,{'YR,zR) be the coordinates at the electrical
center of the ground receiver antenna. TIle Z coordinates of the surveyed trans­
mitter and receiver sites are modified to obtain zT and zl~. The alTIOlmt of
modi fication depends on the type of antenna used. Let (x,)' ,z) be the launcher
coordinates of the target transr:;itting and receiving antennas. Let RT be the
range from ground transmitter antenna to target receiving antenna and RR be
the range from target transr.1i tting antenna to ground receiver antenna. RT
and RR are given by
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(4 )

(5)

2 ? . 2 ~
= [(x(\)-XT) +(Y(ti)-)'T)~+(z(ti)-ZT) ]

2 2 2 ~
= [(x(t.)-xR) +(y(t·)-yR) +(z(t,)-zn) ]

1 1 1 r,

Then the loop range change g(xi'\+l) is

(6 )

The partial derivatives required for rrocessinR DOVAP observations
using the above measurement mode 1 are

(7) - ag - - (x(ti)-xT) (x(ti)-xR)

ax (t.) R
T

(t
i

) Rp, (t. )
1 , 1

og - (y (t i )-YT) (y (\ )-YR)

ay (t. ) =
~(\) 11.11. (t. )1 1

ag -(z(ti)-ZT) (z(ti)-zR) .

az (t.) RT(t i ) 11.R(\)
1

(8) ~g ~ (x(t
i

+
1
)-x

T
) + (x(\+1)-x1\)

aXCt. 1) RT(t i +1) 11.R(t i +1)1+

ag (y(ti+1)-YT) + (y(ti+1)-yR)

ay(t. 1) = 11.TCt i +1) 11.11. (t i +1)1+

ag (z (\+1)-ZT) + (z (t . 1) - zn )1+ '\

az(t. 1) RT(t i +l ) 11.11. Ct i +1) .1+
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3. TilE DOVAP BATCH PROCESSOR. Given a set of N time points ti,i=l,~

along a trajectory and a set of N--l loop range change observations Z:J (i) ,
i=2,N for M DOVAP receivers a=l,M, we want to estimate the position vector
xi for each of the trajectory time points, ti' Recall the DOVAP observa­
tion model given by (2-3)

(9) Z (t. l,t.) ::: g (x. l'x,) + v (i)
~ 1- 1 a 1- 1 a

The measurement error v (i) is assumed to have zero mean and variance R (i).
~ ~

The DOVAP batch processor minimizes the weighted sum of squares

(10)
N

Q(x l ,x2, ... ,xN) = ?
1=2

·M

I
a=l

I 2
-R---(.) (2 (t. l,t.)-g (x. l'X'))

1 a 1- 1 a 1- 1
a

Taking derivatives of Q with respect to xl ,x2, ... ,xN and equating to :e1'O
results in the equations

(11)

(12)
M

L
a.=l

1 TIT
R (' 1) G ](x.)CZ Ct.,t. 1)-g (x.,x. 1))+ -R C') G?(x.)J+ a.. J CJ. J J+ a. J J+ J CL Ja. a

(2 Ct. l,t.)-g (x. l'x,)) ::: 0
a J- J a J- J

j=2,N-l

(13)

where

04 )
dga.(XK,XK+1)

::: ------
dxK

(15 )
dga. (xk ,xk+ l )

dxk+l
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In order to solve the above system of 3N nonlinear equations, it is neces­
sary to linearize these equations about a set of points xlo,x20""'x:~o.

The set of points may be obtained from a number of sources and need not
be very close to the solution. 1be linearization results in a set of
linear equations to be solved for OXi=xi-Xjo. The nonlinear equations are
then relinearized about the new trial solution Xil::xio+oxi' This proc;;ss
is repeated until the solution converges, Le .• loXi 1-+0. The following
development of the solution of the linearized equations iYldicates only
the first iteration in the process of solving the set of nonlinear
equations. Each succeeding iteration in the process is identical to
the first one with xio replaced by xio+oxi' Linearization of (11-13)
results in

(16)

(17)

(18)

AIOX1 + A12ox2 = y(l)

T
A. 1 .ox. I+A.6x.+A.. lOX. 1 :: YU), j=2. N-l
J-,J J- J J J,J+ J+

T
AN_1 N oXN_1 + ANoxN = YeN),

where

(19)

(20)

M

~l = I
a=l

M
A. = I

J a:l

1 Too 1 Too
R G lex. )G lex. )+ R G 2(x. ) G 2(x. )
a(j+l) Q J a J a(j) ex J ex J

(21 )

(22)

(23)
M

Y(1) = I
ex=l

1
R (2)

ex
G

T (x
l
o) r (2)

exl 0:

R eN)ex

1

y(j)
t-1
\ 1 GT 0 1 GT 0

=L RC'I) l(x.)r(j+l)+RC) a2(x.)r(j)
ex:l ex J+ ex J ex ex J J ex

M
yeN) = ~

ex=l
(25 )

(24)
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r (j) is the residual

(26)
o 0

r (j) = Z (t. l,t.)-g (x. 1 ,x. )
J- J J- J

The system of linear equations (16-18) can be written in the block tri­
diagonal matrix form

(27) Al Al2 0 0 0 oX
I

y (1)

T A2 A23 0 0 oX2 Y(2)Al2
.....

0
T A3 A34 0 0 oX3 y(3)A23

=

o

o

o

o

A-~ A A
'~-2,N-l N-l N-l,N

To AN_l,N AN_

y(N-l)

y(~)

This set of equations to be solved for the ox's is of very large dimension
since N, the number of trajectory points to be estimated, is typically in
the range 50-300. In addition these equations must be solved many ti~es

in the iteration process to solve the nonlinear set of equations in (11- 13).
Fortunately, there is a very simple form solving the block tridiagonal
system equations of (27).

Let A be the above block tridiagonal matrix. Since A is a least squares
matrix, it is symmetric and positive definite. A standard theorem in matrix
theory is that for any symmetric positive definite A there exists a non­
singular, lower triangular matrix L such that

(28) A = LL
T

In the case of our block tridiagonal matrix A the matrix L has an especially
simple form. In this case we can write the decomposi tion (28) as
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o

o

T T
0 °1LI L21 ....'

LT T
2

L
32

0

L~
:>

o o T
L",I::..--J

All block clements of the above block triangular natrices are 3x3_~Yquat­

ing block elcnents of A with the corresponding block e IODents of LL1, \,"e
find the following set of equations.

(30)

(31)

(32)

T
Al = Ll Ll

T
A12 = L

I
L21

T T
A. :: L.. lL. . I + L. L.

1 1,1- 1,1- 1 1
i::2,N

(33) T
= L. L. 1 .

1 1+ ,1
i::2,N

Since the matrices Li are lower triangular a Cholesky decoDnosition algo~ithr

is used to solve (30) and (32) for Li- Also, since the Li are lo~er tri­
angular, (31) and (33) defining the off diagonal blo~ks Li,i-l are solved as
triangular systems of equations for the columns of Li,i-l-

The square root decomposition of A allows us to replace the set of
equations Aox=y given by (27) by two sets of equntions

(34)

(35 )

L y':: y

TL 6x = y'

'Ille lower triangular system of equations in (34) may be written in ter-e.5 0:
the 3x3 set of block elements as

(36)

(37)
, ,

Li +1Yi+l :: Y(i+I)-Li + 1,iYi
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1bis set of 3x3 lower triangular equations is solved sequentially for the
vectors YJ. Similarly, the upper triangular system of equations in (35)
can be written in terms of the 3x3 set of block elements as

(38)

(39)

T 'LN oXN = YN

T 'T
L. lOx. 1 = y. l-L. . lOx.
1- 1- 1- 1,1- 1

This set of equations is then solved sequentially for the vectors ox .•
1

Prom the theory of weighted least sequares we know that the covariance
of the vector estimate of x obtained on the final iteration is approximately
A-I obtained on the final iteration. Due to the method of solution of tr.e
equations, A-I is not available. Hm:evcr, it is relatively easy to obtain
the covariance of the individual vector estimates Xi from the block elements
of the square root matrix L. A-I is given by

(40) -1 -T-l
A =L L

-1It is easily determined that the block elements of L are given by

(41) -1 -1
L.. = L.

11 1
i=l,N

(42) -1 -1 L -1
L. , 1 =-L.. L.. 1 . 11,J- IJ J,J- )- j=2,i

The covariance matrices of the estimates x. arc
1

-1
N

-T -1(43) cov(x.) = A.. = L L.. L ..
1 11 j =i 1) )1

Tnus

N

L
j=i-l
N
\ -T -1 -T-l
L. L. 1 . L. . 1 + L. 1 L. .11-,J J,l- 1- 1-j=i

-1
A. 1 . 1 =
1- ,1-

-1
A. 1 . 1 =1- ,1-

(44 )

(45)

A computing formula for these 3x3 covariance matrices is obtained by
substituting the recursive relations for L:-~ given by (42) into (43).

1J
-T -1

L. 1 . L.. 1
1-,] ),1-

Using (42)

(46)
-1

A. 1 . 1 =
1- ,1-

N

I
j=i

-T T -T -1 -1 -T -1
(L. lL. . 1) L.. L .. (L.. 1L. 1)+ L. 1 L. 1

1- 1,1- 1) J1 '. 1,1- 1- 1- 1-
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(47) -1
A. 1 . 'I
~- ,1-

-T [T -1 -1
= L. 1 L. . 1 A.. L. . 1+ IJ L. 1

1- 1,1- 11 1,1- 1-

Obvious 1)',

(48)

. 3
eN -1) s /2a a

rb:'" =1
(49)

4. FRONT END EDIT. Before using the DOVAP measurements in 'the
batch processor, wild observations are detected and de letcd arid the
variances Ra (j), which are used in forming wei ghts for the batch pro­
cessor, are computed.

For the a
th

receiver consider the set of observation {Za(tj,tj+l)}
on the interval [eti,ti+Np)J. If no observations have been drop locked
for this receiver, there will be Np equally spaced ohservations in this
interval. Let NC1, be the actual, number of observations in the interval.
A quadratic curve is fitted to this set of Na observations. Let
ZaCtj-I,tj) ~enote the value of the curve at tj and let Za(tj_l,tj) =
Za(tj_1,tj)-Za(ti_l,tj) be the residual from the curve fit. The set
of residuals on the interval [(ti,ti+Np)] are tested for spurious ob­
sertrations using the sample skelmess coefficient v'5l and the sample
Kurtosis coefficient b2. These statistics are given by

r'N"" l (i (t. 1,t.)-IJ )3a . a ~- 1 a
~

(SO)

N
a

-' 4L (Z (t. I,t.)-\.! )a 1- 1 a
i

(N -1) s It
a a

where lJ a and sa
2

are the sample mean and variancc, respectively. If
either lib'll or b2 exceed valucs for the sg" significance level of these
statistics, thc observation farthest from the mean is deleted. A curve
is fitted to the remaining observations in the interval and the test for
spurious observations is again applied. TIlis sequence of fitting and
testing is repeated untillVblI and b2 aloe less than the values correspond­
ing to the S~o 5i~nificance levels or tmtU less than. 7S1\p observations
remain in the interval. I~en no more observations are to be deleted,
the points which were deleted are replaced by the corresponding values
of the final curve fit. In "ddi tion all noints \.,.hi ch arc originally
missing from the interval, i.e., the drop locked points, are rcplaced
by their corresponding values from the curve fit. If more than .25:in
of the observations in the interval require replacement, all observations
in the interval are deleted and not replaced.
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The interval Cti Jti ,Np ) is chosen so that it has an integral nw;;ber
of subintervals each having Lp observations. The observations in each cf
these subintervals are sUP.1med to provide loop range change rcasurer::ents
to the batch processor which are .05[1' sec apart. The variance of th::,se
ohservatio~sJ which arc, used in the batch processor, are COTlDutcd as
RaCi)=L)sa""(i) where sa 2 is the sample variance corputed fror:1 the curve
fit on the interval Cti,ti+Np). 1l1ef e will he ~~o/Lp consecutive varianc~s
RaCi) which will be equal for the a t1 receiver. 'The above editing pro­
cedure is applied to each receiver and to a set of intervals 1\'hich cover
the entire traj cctory.

Replacement of wild observations is not in itself a desirable pro­
cedure and is certainly not necessary. Ho\~ever» in the DOV:\P batch
processor this replacement procedure greatly simplifies the onerational
logic of the computer program. By being conservative in the reolacerent
of observations and realizing the replacement can be dangerous, no
apparent difficulties have been encountered.
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5. POINT EDIT AND IzECEIVLR EDIT. Althour;h the front end edit hus
deleted most the sl1uriollS observations J some may still remain. ~lorc

importantly, a receivers observations rIa)' be biased either over a small
portion of the trajectory or over the entire trajectoT)·. 111e point edit
and receiver edit are designed to delete observations in these catef,orics.

Following the front end edit and iteration of the batch processor
to convergence, the point edit procedure is applied to cadI receiver
observation used in the batch processor. At each trajectory time, ti,
the normalized l~siduals

(51) r~ (i) =
a

r (i)
a

IR (i)
a

arc examined for each receiver a. used in the batch processing. The residual
ro. (i) is defined by (26) and is the residual computed in the last iteration
of the batch processor. If Ir~ (i) I>5, correspon~iinr; observation is deleted
permanently from the solution. 'Ille-observation correspondinr, to the largest
of the Ir~ (i) I such that 3~ Ir~ (i) 1< 5 is deleted temporari 11'. After cxall­
ining residuals for the entire trajectory and deleting the ones dictated by
the above tests, the batch nrocessor is reiterated to convergence. Add-
i tional observations are then removed accordinp to the above criteria. The
iteration and point edit cycle is repeated until Ir~ (i) I<3 for all rClnaining
residuals.

•\\11en the above iteration and point edit cycle is comp leted, a receiver
edit identifies receivers suspected of being biased. The receiver bias edit
computes the statistic

(52) m
a

=

for each receiver. TIle sum in the above equation is over all residuals for
the ath receiver Ivhich \Vere not deleted, either tor-poraril}' or perraancntly
by the point edit. ~la is the number of tems in this sum. If m = ~,f~xlmCLI;3,
the receiver corresponding to the value m is considered to be biased- and is
deleted from the batch processing solution. 11lC iteration and point edit
cycle is then repeated without this receiver. All residuals Hhich \\'ere
temporarily deleted on the previous point edit cycle are restored to the
solution. The receiver edit is repeated follO'.d.ng an iteration and point
edit cycle until no additional receivers arc suspected of being biased.
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6. TRAJECTO!~Y FILLING. The DOVAP batch processing solution produces
a trajectory position solution at time points spaced .OSLn sec apart. The
number Lp is usually chosen so that these time points are' 1-2 sec apart.
It is obvious that a 1-2 sec interval bet,.,reen trajectory position solutions
is unacceptable for most purposes. This is particularly true if velocity
and acceleration states are to be derived from the position solution. :\1­
though \;1e could set Lp=l so that a batch processor solution is computed at
every DOVAP sample time, this is undesirable since the CPU tir.;e and mass
storage used by the DOVAP BET program is greatly increased. A procedure
described below, which we call trajectory filling, is used to add posi tion
solutions between the batch processor position solutions. Experimental
results show that there is very little difference between the position
solutions obtained by trajectory filling and those obtained by setting
Lp=l.

Let the DOVAP sample times beb'een batch processor times ti and ti+l
be denoted by ti,1,ti,2, ••• ,ti,Lp-1 and the corresponding trajectory position
vectors by xi l.xi 2, ••• ,xi Lp-l' The least squares position solution for. , , . ,
computlng Xi,j+l' glven Xi,j 1S

ex
(53)

where

-1 \"x.. l=x.. +~1 I..
1,J+ 1,J

1
s 2eij

ex

(54) M= I
ex

The sums in the above two equations are over all receivers whose observations
were in the final batch processor iteration for the time interval ti to ti+l.
The quantity S&(i) is the sample variance for the interval ti to ti+l ,,,hich
was computed in the front end edit.
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APPENDIX 1\

!JOVAP rU:r:R/\CTION CORRECTH'\. The refrC1ctj on correcticm apnlied to
DOVAP is consi dcrably lnorc cor.mlex than that norrnally applied. Since the
ranges involveu in nOVAp tracking arc re lati vc 1)' short, a flat Earth ray
tracing procedure can be used. Also, since DOVAP data is normally used
only ,-,hen the elevation angles are suffl cient 1)' lar,lT,c, S<lY greater that
10 0 ; an approxiMation to the ray trace procedure is sufficiently accurate.

In the figure bclO\~ the DOVAP transmi ttcr is located at T and the
receiver at R. The target is at n travelling with velocit)' Vw

T

~T(rM) and 1\{ (rr'l) are unit vectors tangont at the target t? the ray paths
from transmitter to target and target to receiver, respectlvoly.

POl' an isotropic mediuM a;ld for targets with speed IVtll« c, the
doppler frequency I fO l at the receiver can be expressed in torms of the
phase path length L.

(55 )
-2fo- c

dL
crt
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\'!here fa is the transmitted frequency. TIle phase p<1th length for the above
figure is

(56) I
t.!

L = n (1') ds

T

where nCr) is the index of refraction at a point on the r?y I'lath. 11,e fi~st

term in (56) is the phase path length from transmi tter to target and the
second term is the phase path length from target to receiver. The integration
is to be carried out along the ray path.

The element of path length ds may be written as

(57)

\Jhcrc T (1') is a uni t tangent vector to the ray path at point r.

The path length can then be IVri tten as

tlCt

) r: (r) ~ (~)
-

(58) L = • dr + n(r)t(r) . dr
r T r~.1 (t)

Differentiating (58) with respect to t and ignoring ~~

(59) dL
dt =

where the - and + refer to the t ransmi ttcr and receiver sides of the target J

respectively. (59) can be reIVritten as

(60)

(60) shm\ls that the received Joprler signal is dependent on the refraction
effects of the atmosphere in two ways. First, note that the received ciOD­

plcr is proportional to n(r\l), the coefficient of refraction at the tarc:et.
Second, the received doppler is not ~uitc proportional to the radial velocity
as is nsswncd since the wlit vectors t R and iT are not along the sight line
vectors.
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-(1) - -(1) -. .
Let TT (r~l) nnd TR (rrl) be um t vectors along the 51 ght lines

from trnnsmitter to target and target to receiver, respectively. The
geometric situation is shown helow.

- (1)
T T

T

- (l)
Tr . =(61)

(62)

The unit sight-line vectors can be ....-ri ttcn as

6\( i\.)

Ir~(rTI

(r~(TR)
---

Ir~(rRI

\vhcre TT nnd TR arc position vectors of the transmi ttcr and receiver,
respectively. Let vdoB be the observed dOl1pler velocity r,iven by (60)
and let vel he the dopp~er velocity if therc were no refraction effects.
vd is given by

(63) v = (1 (l) _ T(1)) • V
el T R }\

We can \vri te vd in terms of vdoBs as
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(64 )

where

(65 )

In order to correct for refraction in DOVAP or eCluivalently to correct
vdoBs to vd (64) shows that we first divide vdoBs by the coefficient of
refraction at the target and then substract AVd,

In order to compute (T-:t (1» , V~l needed in the computation of
6vd, consider one leg of the OOVAP propagation path shown below

__~""'l-- Flat Earth

B is the observed elevation angle Md 13T is the true elevation, The
oYevation refraction corroction is 6E~ET·Uo' The angle 6~ is given by

(66)

(67)

(68)

6Vi • (ET-EQ)-(cN-Eo)

~Vi • liE- (I1rEo)
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(69) 61JJ = AE-!:IE~1

Both {\c and llE
H

are available from a ray trace.

Let 5T> be an orthonormal set of hase vectors wi th s1'1 along the
sight line vector frQm transmitter to target and 51' in thl vertical
plane containing :r.pJ. In terms of these base vcctorg :r,~ land tT can
be wri t ten as

(70)

(71)

Since 6~T is a small angle (71) can be approximated as
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-The velocity vector V~l can also be renrcscntcd in the 51'> basis as

(72)

- - s(73) VH = <5
T

V
H

>

where

(74) V
S

> = H
sTL [t]H



Ms L is the rotation matrix from the latmcher coordinate system to theT . .
sight line coordinate system defined by ~T> • ~,~> and! are the coordinates
of the velocity vector in the lalUlchcr coordinate system. TIle matrix
[·1 may be computed by rotating thru an azimuth angle
srL

and then thru an elevation angle

X-XT

Y-v; T

-1
aT = tan(75 )

(77) cosar -sinCtT 0

cos£TsinaT cos£TCOS Clr siner

-sin£TsinCtT -sincTcosaT coseT
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(79)

(78)

In terms of these angles ~1 is
sTL

(76)

Using (70), (72), (74), and (77) the contribution of the transmitter leg
of the propagation path to the refraction correction twd is

'1110 correction l::.vd given by (65) can nO\~ be computed.

A similar equation holds for the receiver leg of the ray path



OPTI.!'1AL DOVAP INSTRUMENTATION PLA.~NING

William S. Agee and Jerry L. ~1eyer

US Army White Sands Missile Range, NM 88002

ABSTRACT. A DOVAP instrumentation planning procedure has been
developed which selects a nearly geometrically optimal set of Mreceiver
sites from over 600 sites presently available at WSMR. The criterion
used for selection of the sites is the minimize

N
~

i=l
w.trVi

1

where Vi are the 3x3 diagonal blocks of the 3Nx3N error covariance matrix
V which would result if the data from the receivers were batch processed
to obtain vector position estimates Xh i:l,N for N points entirely cover­
ing a nominal trajectory. The wi>o are weights used to denote the rela­
tive importance of precise estimates at each of the N trajectory points.
The final output of the selection procedure is a list of the ~1 receiver
sites, the trajectory segments in which each of these receivers should
produce usable doppler data, the geometrical covariance for each tra­
jectory point, and a computer plot of the receiver sites along with the
ground track of the nominal flight path.

1. INTRODUCTION. The DOVAP instrumentation planning procedure
described in this report is designed to assist in the development of a
DOVAP Instrumentation Plan (IP) for a given nominal trajectory or flight
path. The technique produces a locally optimal selection of M existing
receiver sites based on geometrical considerations. Since other signi­
ficant factors such as mul tipath, pOl.,rer requirements, site access ability ,
etc. are also important in the preparation of a DOVAP instrumentation
plan, consideration of the factors may require alteration of the geomet­
rically optimal instrumentation plan. For this reason the computer pro­
gram also has a compare mode to determine the geometrical degradation
between the optimal plan and the altered plan.

Given a nominal flight path specified by the pOSItIon vectors Xi,
i=I,N along the path, the receiver selection process minimizes

N
L

i=l
w.tr cov(x.)

1 1

whe.re cov(xi) is the 3x3 covariance for an estimate of xi, which would
result from estimating the trajectory with the DOVAP BET program [1].
The wi are positive weights used to emphasize some trajectory points
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more than others. The most cornman choice for Wi is wi=l for all i, i.e.
each trajectory point has equal weight in the receiver selection process.
COV(xi) used in the criterion function is a purely geometric covariance,
i.e., all receiver noise covariances are unity.

Selection of the best possible set of M DOVAP receivers from the 650
receiver sites presently available at WSMR is a very large combinatorial
programming problem. Enumeration and examination of all possible sets of
Mreceivers for a given flight path is obviously an impossible cooputing
problem. Several methods for the solution of integer and combinatorial
programming problems are available in the literature on Operations
Research. However, the author has not been able to formulate the present
problem in a way which would be amenable to solution by these methods.
Rather than pursuing the globally optimal set of ~I OOVAP receivers, we
will find a locally optimal set of receivers based on a plan improvement
algorithm. Starting with some arbitrary initial IP having ~I receivers,
we make successive interchanges between receivers presently in the IP and
those outside the plan until no further improvements are possible. At
each stage of the improvement algorithm the interchange is made \,-hich
results in the greatest improvement to the IP according to the minimiza­
tion criterion. The resulting plan is only locally optimal in the sense
that it is dependent on the initial plan with which the algorithm start­
ed. Starting with a different initial IP we might achieve a different
final IP having a larger or smaller value of the criterion function.
Having started with different initial IP's in a couple of cases, final
IP's were reached which, although they were slightly different in composi­
tion, have nearly the same values for the criterion function.

The algorithm is relatively economical in terms of CPU time, requir­
ing 2-3 minutes for a plan with eighteen receivers. The major factor in
determining the computer time used in selecting the plan is not the
number of receivers in the plan but the number of receivers which must be
considered as possibly being added to the plan for improvement. The out­
put of the program implementing the algorithm is a set of ~I receiver
sites, the value of the criterion function, the differential contribution
to the criterion function for each receiver at each trajectory point, the
trajectory intervals during which each receiver should produce usable
data, and a computer plot of the receiver and transmitter sites along with
the ground track of the nominal flight path.

2. DOVAP MEASUREMENT MODEL. The DOVAP measurement system is a two
way CW doppler system which measures a loop range change or equivalently
an average loop range rate of a target between consecutive sampling times
ti and ti+ 1. The normal sampling interval is 50 msec. A OOVAP instru­
mentation path consists of a transmitter station and usually ten or more
receiver stations. In addition the target being tracked carries a fre­
quency doubling transponder. The OOVAP receiver station receives both
the reference frequency from the transmitter and the frequency doubled
signal from the target transponder. A frequency comparison of the two
signals and the addition of a 5~fz bias signal is perfol~ed at the
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rece i ver. The resulting signal is converted to digital fonn by counting
the doppler cycles over a 50 msec time interval. The resulting biased
doppler measurement is

(1) met. 1) :::; 14.72194 set. ,t. 1) + 50278 + N. 11+ 1 1+ 1+

where s(ti, ti+l) is the refraction distorted change in loop range over
the 50 msec interval. The loop range is defined as the sum of the range
from transmitter to target and the range from target to receiver. Ni+l
is a measurement error which is assumed to be random with zero mean.
Thus, except for refraction, for which a correction is applied, DOVAP
measurements are considered to be unbiased. Subtracting the bias 50278
and dividing by 14.72194 yields the modified DOVAP measurement m~(ti+l)

(2) m"et. 1) :::; set. ,t. 1) + N. 1
1+ 1 1+ 1+

After correcting for refraction we have ~he measurement model for the ath
receiver.

(3) Z (t. ,to 1) :::; g ex. ,x. 1) + v (i+1)a 1 1+' a 1 1+ a

where g (xi, xi +1) is the loop range change from ti to ti+l and the argu­
ments Xi and xi+l indicate the dependence on the position coordinates at
these times. xi is the position vector of the target in the launcher
coordinate system.

The loop range change is modelled as follows. Let (XT,YT,zT) be the
coordinates of the electrical center of the ground transmitter antenna in
the launcher coordinate system. Also, let eXR,YR,ZR) be the coordinates
at the electrical center of the ground receiver antenna. The z coordinates
of the surveyed transmitter and receiver sites are modified to obtain ZT
and ZR. The amount of modification depends on the type of antenna used.
let (x,y,z) be the launcher coordinates of the target transmitting and
receiving antennas. Let .RT be the range from ground transmitter antenna
to target receiving antenna and RR be the range from target transmitting
antenna to ground receiver antenna. RR and RT are given by

(4)

(5)

Then the loop range change g(Xi,xi+l) is

(6)
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(9)

The partial derivatives required for processing DOVAP observations
using the above measurement model arc

(7) d g -(x(ti)-xT) (x (t i ) -xR)

dX(t.) Rr(t i ) RR(t i )
1

d g - (y (t i) - yT) (y(ti)-YR)

d y(t. )
:::;

Rr(t i ) RRCti)1

dg -(Z(\)-ZT) (zCti)-ZR)

d z (t.) Rr(t i ) RR (\)
1

(8) Clg (x (t i +1) -xT) (x (t. 1) -xR)
1+

d xCt. 1) RT(t i +1)
+

RR (ti + l )1+

Clg Cy(t i +1)-YT) (y Ct i +1) -YR)

dy(t. 1)
:::

R.rCt i +1)
+

RR(t i +l )1+

dg (z (t i +1) - zT) (z(t i +1)-zR)

dz(t· 1) RT(\+1)
+

RR(t i +l )1+

4. RECEIVER EFFECTIVENESS. The covariance matrix A-1 of the DOVAP ba.tch
processor solution rzr-may be written in the elementary form

A-1 = (~ ~ J (x. l' x.) JT(x. l' x. ) )-1
i=2 a=1 a 1- 1 a 1- 1

where J (x. I'x.) is the 3N vectora 1- 1
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(10)

J (x. l'x.)ex 1- 1
=

o

o

o

T
G l(x. 1)o 1-

T
G 2 (x.)o 1

o

o

(i-I) place

~ place

if the oth receiver IS used in the i th interval and J a (xi-l,xi)=O if the

oth receiver is not used in the jth interval. GaT (Xi-I) is the partial
derivative of the DOVAP measurement function ga(Xi-l,xi) with respect to

its first argument and Ga1(Xi) is the partial derivative with respect to
the second argument. A receiver may be used in the ith interval only if
its tracking elevation Sa(i) at the midpoint of the interval satisfies
the condition 81 < 8aCi) < 82. 61 and 82 are input to the progra'l1 with 81
normally in the range 1O'tJ_ 20° and 82 normally in the range 70° _80° . The
effect of adding or deleting a DOVAP receiver from the kth interval is
easily written using the vectors JaCXi-l,Xi). Let A:lbe the covariance
matrix after adding a receiver S to the kth and let A:l be the covariance
after deleting a receiver from the kth interval. A:land A:l are given by

(11)

(12)
-1

A
-1

= A +

Thus the effect of adding or deleting a receiver S in the kth interval is
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(13)
T

E(k B) = :; V(k,~) V (k,B)
, 1 ± q

where the V(k,S) is a 3N vector. The upper sign indicates addition of a
receiver and the lower sign deletion of a receiver.

(14) V(k, B)

and q is the scalar

(1S)

Partition V(k,S) into its 3Xl subvectors

(16)

V(k,B) =

The 3-vectors V.(k,B) are easily computed as
J

(17)

-1 1where A.. are 3><3 block elements of A-. The scalar q is given by
1J

(18)

The effect matrix E(k,S) can be written in terms 3x3 block elements
E .. (k, S)

1.J

(19) E.. (k,S)
1)

TV.(k,B) V. (k,S)
= :; _1._-:-----')::-__

1 ± q

Define the vector
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(20)

Then

*V. (k, (3)
1

Vi CB)
:: 11={--q=

(21)
- *T

E.. (k,B) = + V.(k,B) V. (k,B)
1J 1 J

This expression for the effect of adding or deleting the 3th receiver in
the kth interval is used to modify the covariance matrix A.-I. The above
equations are used sequentially to add or delete the 5th receiver for all
intervals k=2,N. In adding or deleting in the (k+1) st interval, A is
the modified covariance obtained in adding or deleting from the kth
interval.

The effectiveness of a receiver is defined as

N
(22) e(S) = l: TrE(k,B)

k=2

Using (13), (16) , and (20) in (22) e (8) can be written as

(23)

or

e(13) =
N N * *T
l: 2: Tr Vi (k,13) V. (k,S)

k=2 i=l 1

(24)
N N

e(13) = 2: ~

k=2 i=l

*T *
V. (k,B) V.(k,B)

1 1

More generally, the receiver effectiveness may be defined giving more
importance to some trajectory points than others by using il'eights \';j>O.
Then we define the receiver effectiveness as

(25) e(8) =
N N
l: L

k=2 i=l

*T *w. V. (k, 13) V. (k, 13)
111

Another quantity which is useful in analyzing the effects of a receiver
in a DOVAP IP is the differential effect of a receiver \I'hich is defined
as the increase in the diagonal elements of A-I if the receiver is delet­
ed from the IP. Thus the differential effect is the diagona.l elc17lents of

(26)
N

E(B) = L: E(k,S)
k=Z
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Also of interest are the quantities

(26) e. (k,S)
J

N *2
r V.. (k,B)

1.=1 1J
j=I,2,3

the numbers ej(k,S) for a given interval k show the importance of the
observations from receiver f3 during that interval.

5. OPTIMAL RECEIVER SELECTIO;-':. The optimal receiver selection
procedure' chooses a set of M existlng receiver sites which minimi zes

(27) c =
N
1:

i=l
w. tr cov (x.)

1 1

The quantity c may be interpreted as a weighted sum of the error esti­
mates which would be obtained if loop range change observations of a
nominal flight path from a set of m receivers were processed with the
DOVAP batch processor. The choice of m(l0-20) receivers from the 650
receivers presently available at WS~lR is a very large combinatorial pro­
granuning problem which is prohibitive from a computational point of view.
Even if the number of available receivers is considerably reduced by some
intelligent screening procedures, the ~agnitude of the problem is still
prohibitive. Rather than trying to select the set of receivers which
achieves the global minimum of c we will use an IP improvement algorithm
to obtain a local minimum of c.

The IP improvement algorithm selects receivers from an instrwnenta­
tion planning pool (IPP). The IPP is a set of receivers which is obtain­
ed from the set of all existing sites by placing constraints on the track­
ing elevation of a receiver and on the transmitter reference signal
strength available at a receiver site. The following constraints are
used to develop the IPP. Let Ta=l if the ath receiver can receive a
sufficiently strong 36.2 ~lliz reference signal from the transmitter. Other­
wise, Ta=O. The values of Ta for all receivers and transmi tters were
furnished by the DOVAP instrumentation system personnel from tests con­
ducted to determine signal strength. The 72.4 illH z antennas used at the
DOVAP receiver sites may have nulls at low and/or high elevation angles
of the incoming 72.4 MHz signal. Thus, in order to insure a sufficient
72.4 ~lliz signal strength at the receiver, the elevation angle of the line
of sight between the receiver and the trajectory should be between 61 and
62. The minimum 61 and the maximum angle 82 are a function of range be­
tween receiver and target. For each receiver a let RGa be the shortest
ground range for any of the points on the nominal trajectory.

(28) =
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where (Xi,Yi,zi) i=I,N are the coordinates of the trajectory points and
(XRa"YRcv ZRo) are the coordinates of the a th receiver. Let Ea be be
elevation of the line of sight from ath receiver to the trajectory point
corresponding to RGa,.

(29) Ea
-1= tan

(Z'-ZR)
1 a
R

Go.

The IPP is given by

(30) IPP = {aiT =1,8 1<E <8
2

}a - 0.-

Let Mbe the maximum number of DOVAP receiver sites we wish to
select and let Ml<M be the number of receivers used to start the selection
procedure. MI may be considered as the minimum nwnber of receivers to be
selected. Given an arbitrary initial IP having ~ll receivers the SELECT
prograTJ1 will construct an IP having Ml +1 receivers by adding the receive:c
from those available in the IPP which results in the greatest decrease in

N
c = L

i=l
w. tr cov (x. )

1 1

The SELECT program then deletes the receiver from this modified IP \ihich
results in the smallest increase in c. This exchange procedure betKeen
the IPP and the IP is continued until no further improvesent can be Dade.
The exchange procedure terminates when the received added to the IP is
identical to the receiver deleted from the IP. The final set of receivers
in the IP is the best set of MI receivers. To form the best set of \I1 +I
receivers start with the IP formed by adding the receiver added and
deleted at the termination of the previous stage to the best set of >il
receivers. Proceed with the exchange process. Similarly, the best IF's
having MI+2, MI+3, "', M receivers are obtained. The follo~ing flo~

chart may clarify the above description of the instrulnentation plan
improvement algorithm.
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PROVING PROGRAMS CORRECT

ELWOOD D. BAAS

ARMY MISSILE TEST AND EVALUATION
WHITE SANDS MISSILE RANGE, NEW MEXICO 88002

ABSTRACT'

Mathematical methods of proving programs correct have recently

been investigated by several interdisciplinary gro\.lps, 11'l.is

effort has been motivated by the fact that some computer applica~

tions are being restricted in ilnportant areas because of the

inabi~ity to design and implement software programs which can be

shown convincingly to be correct.. It is also recognized that

debugging and maintaining computet programs are two very serious

and costly problems facing thecon~utcr ind\.lstry. This paper
. .

provides a survey of the investigative work completed to date

and some new program desi~1 concepts which have resultod from

the effort.
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PROVING PROGRi\MS CORRECT

Proving programs correct (or program correctness) can rightly

be considered as part of what is currently referred to as s~ructured

programming. The other areas related to structured programming which

arc discussed in the literature could be categorized as: progrmnming
methodology, program notation, and program verification. It is within

this general context that we shall address the topic of program

correctness.

Using 20/20 hindsight, it is obvious that during the first 25

years of programming th~re was too little emphasis placed on program

correctness and too much emphasis on debugging. As the size and cost

of large computer programs burgeoned during the past 5-10 years, more

and more effort was expended in trying to develop a degree of structur­

al integrity along with a given computer program. In most cases this

~arch for a viable structure was motivated by a very practical reason:

program debugging was taking so long that the program or system became

obsolete before the program was checked out!

At present there are over one hundred people (worldWide), mainly

in the areas of Mathematics and Computer Science, who are actively

engaged in the areas of proving assertions about progr~. Some of

the primary methods of formal program proof construction currently

under investigation are:

(1) Inductive Methods

(2) Calculus Schemata

(3) Graph Techniques

(4) Recursive Schemes

(5) Radix Sorting Techniques

(6) Algebraic Nbde1s

These methods involve the tranSlation of the program to higher level

semantics which then can be used to verify the coding logic independent

of specific inputs and outputs. Thus one is concerned not so much at

how a program changes values of variables, but instead at how relations
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amoung variables remam the same. At the higher level construct,

precise definitions of completeness, consistency or correctness can

be applied to draw conclusions concerning the original program and

its input-output relations. Strong and Walker of IBM summarize this
basic notion as follows: '~st approaches to proving ,programs'

COrrect concentrate on the verification of input"'output relations,
the verification techniques being independent of any particular attri­

butes of the input-output relation in question."l

One should note at this point that the concept of formally prov­

ing a program correct is radically different than the usual process

of testing or debugging a program. Testing can prove that a program

is incorrect, but no reasonable amount of testing can ever prove that

a non-trivial program will be correct for all allowable variations of

input conditions. Professor Dijkstra states the case clearly: "Pro­

gram testing can be a very effective way to show the presence of bugs,

but is is hopelessly inadequate for showing their absence." 2

There are some serious limitations to these formal correctness

methods as far as practical applications are concerned. First, there

is no universal higher level scheme at present; each construct is

dependent on the particular program language used. Thus each correct­

ness scheme must be custom built around a given language. In fact,

Ashcroft, has shown that the limitations and possibilities of correct­

ness methods are just those of language definition methods, As a

oractical example of a limitation, consider the frequent question

concerning program proofs: "What about overflow?" The answer is

either, "this particular method is defining a simple language with

idealized storage registers" or "show me a language definition that

considers overflOW and I will construct a correctness method which

takes care of it.,,3

A second limitation of proving assertions about programs has to

do with program size. As the programs become larger, the proofs become

lengthy. When the techniques of proof become long and detailed, they
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may themselves contain errors. .Jones comments on this nroblpm'

APPENDIX

Dutch National Flag Problem

(TI1is programming problem and solution were presented by Professor
Dijkstra at the Conference on Programming ~futhodology held at the
University of New ~xico. Albuquorque, NM. Jan 7~ll, 1974.)

Problem: Each of N buckets contains a single red, white, or blue
pebble. Using a fW1ction swap (p,q) which pennutes pebbles, and
a function look (p) which identifies the color of a pebble, write
a program which will rearrange the pebbles so that red, white, and
blue are separated into three bins.

Restrictions: Each pebble may be looked at only once. Missing
colors are allowed. No arrays are allowed.

Solution:

r

Initial conditions: r: = 1; w: = N, b: = N

i
b

Program: do w~ r~

col: = look (w);
if col = red~ swap (r,w); inc(r)O

col =white~ dec (w)O
col = blue~ swap (w,b); dec (w,b)

£i
od

.
Note: This program is machine independent. To prove this program
correct one needs to simply check that the lIor statements" are
exclusive and that the program terminates.
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GENERALIZED PLANE STRAIN IN AN ELASTIC, PERFECTLY
PLASTIC CYLINDER, WITH REFERENCE TO THE

HYDRAULIC AUTOFRETTAGE PROCESS

Alexander S. Elder
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Robert C. Tompkins
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Applied Mathematics and Sciences Laboratory
Ballistic Research Laboratories

Aberdeen Proving Ground, Maryland

ABSTRACT

Conditions for generalized plane strain in an elastic, perfectly
plastic cylinder subject to uniform internal pressure are derived from
specific assumptions concerning the displacements and the end condi­
tions. Specifically, we assume the tangential displacement is a
function of the radius only, and the axial displacement is a function
of the distance from the diametral plane of reference. We conclude
immediately the shear strains and rotations are zero. The shear
stresses are also zero if the cylinder is free of residual stresses
in its original state. SYmmetry of the normal stresses follow from
arguments involving the Prandtl-Reuss flow equations, the Von Mises
yield condition, and the elastic behavior of the plastic zone when
subject to hydrostatic pressure. The equilibrium equations, boundary
conditions, and end conditions are also involved. The axial strain
is found to be independent of rand z. Three equations governing
plastic flow are derived which are similar in form to those given by
Prager and Hodge for the plane strain condition. These equations were
solved numerically by integration along the characteristics. An
iterative procedure was required to determine the radial pressure and
axial strain at the elastic plastic interface in a manner which satis­
fied both boundary and end conditions. Numerical results are presented
for a cylinder with a wall ratio of two for both open end and closed
end conditions. The residual stresses which remain after release of
the hydraulic pressure were also calculated. Axial as well as circum­
ferential residual stresses are produced. Calculations for wall ratios
in the range 1.5-3.0 were carried out. Re-yielding at the inner sur­
face will occur if the wall ratio exceeds 2.25; the stresses remain
elastic for smaller wall ratios when the pressure is released.
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I. INTRODUCTION

In this paper we consider axial, circumferential, and radial
stresses in an elastic, perfectly plastic cylinder pressurized inter­
nally until the entire cylinder undergoes plastic yielding. It is
assumed the cylinder is in a condition of generalized plane strain, the
ends of the cylinder are either open or closed, and appropriate boundary
conditions apply at the cylindrical surfaces. The mathematical treat­
ment is a generalization of the plane strain analysis of Prager and
Hodge. The numerical analysis is based on integration along the char­
acteristics of a system of quasi-linear, hyperbolic, partial differential
equations. The residual stresses which exist when the hydraulic pressure
is released are also calculated.

The analysis begins with three assumptions concerning the dis­
placement field in a long, uniformly pressurized cylinder originally
free of residual stresses, and deduces the nature of the stress and
strain fields which are consistent with these assumptions. As usual,
boundary conditions, equilibrium and compatibility equations, and
equations giving the strains as functions of the stresses or displace­
ments lead to the required stress and strain fields in the elastic case.
Initial conditions, the yield condition, and equations governing plastic
flow are essential additional requirements for the plastic zone. The
solution obtained from these relations, together with the original
assumptions concerning the displacements, yields a mathematical solution
which is internally consistent. Conditions of confined plasticity are
assumed; that is, the plastic strains are of the same order of magnitude
as the elastic strains, and can be derived from the displacements in
the same manner. For simplicity, infinitesimal analysis is used through­
out, perhaps at some cost in realism when one considers the significant
elastic strains which can occur in a pressurized cylinder of very high
strength steel.

II. GENERALIZED PLANE STRAIN IN AN ELASTIC CYLINDER

In an elastic, isotropic cylinder, we assume: the tangential dis­
placement is zero, the radial displacement is a function of the radius
only, and the axial displacement is a function of the distance from
the diametral plane of reference.

v = 0

u = fer)

w = gez) .

( 1)

(2)

(3)

The displacement-strain relations, equations of equilibrium, and
stress-strain relations are used to show that the stresses and strains
are axially symmetric and torsion-free.
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\
The shear strains are given byl

dU dV v
yr6 = rae + aT - r

dU dW= - +
d Z dr

dV 1 Ciw
Y ze = -+

dZ r CiS

On referring to Eqs. (1) - (3), we see

3v
0,

av
0,

3v
0Clr = ae- az-

au
0,

dU
038- =dZ

Ciw
0,

Clw
0;)6= aT=

so that

The stress-strain relations for shear are

(4)

(5)

(6)

(7)

(8)

(9)

(10)

so that

T = Gyrz rz'
(11)

Tre = 0, T rz 0, T zS = 0 • (12)

Eqs. (7)thru (12) show that the cylinder does not undergo shearing
strains due to torsion.

Next, we use the stress-strain laws to show the stresses and
strains are axially symmetric. The normal strains are given by

Clu = ~ E = dW ..J 0
E r = 8r ' E e r' Z dZ T (13)

. dV 0slnce.38 = •
are glven by

The stress-strain equations for the normal stresses

1. Timo8henko~ S. and Goodier~ I.N.~ Theory of Ela8ticity~ second
edition~ McGraw Hill Book Company~ Inc.~ New York~ 1951. Pages
J05~ 306.
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2
°z = K(€e+ Er+ 8 z) + 3 G(2€Z-Er -E e) .

On referring to Eqs. (7), (8), and (9), we see

(14)

(15)

(16)

and consequently,

dE
r----as = 0,

dcr
r----as = 0,

dE: zae = a

dcr zae - o.

(17)

(18)

The normal strains and stresses, as well as the displacements, are
axially symmetric. We also find that

dE:
raz = 0,

dE:
Z

-= 0dr (19)

The equations of equilibrium are required in order to complete the
solution. We have

cr - cr
r e

r = 0

which reduce to

dT 1 dT e dcr Trz z z rz
--+---+--+-·-=0dr r de oZ r (20)

dcr
r

--+or
a-ar e

r
= 0 (21)

dO zaz = a
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We see that Eq. (23) is redundant, as it duplicates information given
in Eq. (18).

From Eq. (16) and Eq. (22) we find

so that

lh: zaz = 0

w = C + Dz .

(24)

(25)

An equation for the radial displacement is found from Eqs. (13),
(14), (15) and (21).

(26)

and from Eq. (25)

u = Ar + Blr

A + Blr 2
Ee =

A - Blr2
E =
r

E: = D .z

(27)

(28)

(29)

(30)

The Lame' formulas for the stresses are obtained from Eqs. (14), (15),
and (16)

where

2
cr Al + B'lrr

0"8 = Al Bl/r
Z

0" = D'z

2A' = K(2A+D) + 3 G(A-D)

B' = -2GB
4Df = K(2A+D) - 3 G(A-D).

• (31)

(32)

(33)

(34)

(35)

(36)

The constants must be determined from the boundary conditions which
may be stated either in terms of stresses or displacements. We also
find

dO"d: = 0,
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The stress-strain relations given by Eqs. (14), (15) and (16)
are not valid in an elastic-plastic cylinder, so a more detailed anal­
ysis is required to prove the stresses and strains are independent of
z and 6. Eq. (37) is also invalid for a long cylinder when plastic
flow occurs.

The existence of residual stresses resulting from prior thermal or
mechanical history does not affect the preceding formulas provided the
total stresses, due to residual stresses and due to loading, remain
within the elastic limit. We assume the stresses, strains, and dis­
placements given above are produced by external loads only.

III. GENERALIZED PLANE STRAIN IN AN ELASTIC-PERFECTLY
PLASTIC CYLINDER

Consider a long, hollow cylinder pressurized internally until a
plastic zone develops near the inner surface, as shown below in Figure
1. We neglect conditions near the ends where hydraulic seals and
various mechanical attachments will produce a complicated two-dimensional
stress distribution. A few diameters away from the ends, these local
effects will disappear, and the assumed conditions governing the dis­
placements, given by Eqs. (1), (2), and (3) of the preceding section,
will closely approximate the actual physical conditions.

FRICTIONLESS SEALS, BOTH ENDS

HIGH PRESSURE HYDRAULIC CONNECTION

NOTE: EXTERNAL CYLINDRICAL JACKET NOT SHOWN.

PLASTIC ZONE

ELASTIC ZONE

FIGURE 1. Cylinder Deformed Plastically by Internal Hydraulic
Pressure
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Eqs. (7), (8), (9) and also (13) of the preceding section are
valid, as they do not involve the stress-strain relations or the yield
condition. Additional analysis is required to show that the shear
stresses are zero.

The Prandtl-Reuss flow equazion 1S assumed to govern the deformation
in the shear during plastic flow

Gyrz
· + AT (39) *Trz rz

GYz8
•

+ AT z8 (40)= TZ8

· · (41)GY8r Ter + ATer ,

In these equations, A is an unknown parameter depending on time and the
coordinates r,z, and e. Since the shear strains are zero, we have

On solving we find

-8
T = a erz rz

where

· AT 0T + =rz rz

· AT 0Tz8 + zS

•
lSr + A1Sr = o .

(42)

(43)

(44)

(45)

(46)

We assume the cylinder is free of residual stresses
of pressurization. Then the shear stresses will be
remains elastic and during incipient plastjc flow.
from the beginning of plastic flow, we have

at the beginning
zero while the tube
If we measure time

T = 0rz ' lze = 0, T = 0 when t=O.Br (47)

2. Prager~ W. and Hodge~ Jr.~ P.G.~ TheoPy of PerfectZy PZastic SoZids~

Dovep Publications~ New Yopk~ 1968. Pages 16-32~ 95-122.

d* In this section the superimposed dot means dt'
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Now \ is a positive scalar, so \>0 when t>O. Hence, the exponential
factore- O in Eq. (45) cannot vanish. It follows that

a = 0rz '

and consequently

a = 0
8r

(48)

'[ = OJrz TSr = 0 for t;#O . (49)

Eq. (49) corresponds to Eq. (12) of the first section. Eqs. (21),
(22) and (23) are also valid since the shear stresses are zero; these
equations are repeated below for convenience.

dar 0r-oe
--+---=0dr r

dO z--az = 0

As mentioned previously, we cannot use the elastic stress-strain laws
to prove the stresses and strains are independent of z and e. However,
if we add Eqs. (14), (15) and (16), we find

(50)

This relation between the sum of the normal stresses and the sum of
the normal strain is valid in both the elastic and plastic zones, as
it does not involve the deviatoric stresses and strains.

The first equilibrium equation gives
dO

r° =r--+oA ar r

and from the displacement strain we have

u au
£e = r' £r = ar

50 that

(51)

dU dW
3K(r ar + u + r az) . (52)
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On integrating with respect to r. we find

rZOr + ~Ozdr = 3Kcru+jfr ~~ dr).

Integration by parts gives

~
2dW 1 2 dW 1 2 a wr -- dr =- r - - - J; -- drdZ 2 oZ Z.I~ oroz •

The last integral vanishes since we assume

aw = 0
ar '

Hence,

From the boundary conditions

o = - p. at r =ar 1

(53)

(54)

(55)

a = 0r at r = b

(56)

which is valid for the part of the cylinder between the seals, we find

2 rb bl 1 2 2 aw
Pia +)13 rO'zdr = 3K(m) + '2 (b -a ) azl

a a

Evidently p.aZ is independent of z, The integral is proportional to
the net axill load applied at the ends of the cylinder, and must be
independent of z from equilibrium conditions. The term on the right
hand of the equation involving u is also independent of z. Hence,

oW = 0az

and the axial strain is independent of z. The conditions
ae z ot z
-;-z = 0, - ;I 0

17 ar

define the conditions for generalized plane strain.
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On returning to Eq. (50), we have

so that

o. (57)

We use the Von Mises yield condition to prove that 0 and 0 8 are
independent of z. In the absence of shear stresses the V6n Mises yield
condition is given by

(58)

Eq. (58) is assumed to be valid for the entire plastic zone. In this
equation, the normal stresses include residual stresses as well as
stresses produced by the external forces on the cylinder. We must
assume that there are no residual stresses when the cylinder is in its
original, unloaded state; otherwise the use of the Lame' formulas to
calculate stresses at the elastic-plastic interface, to be discussed
later, would be invalid.

o
r

0=0z (59)

when the cylinder is in its original elastic state and not subject to
external loads.

Differentiate Eq. (58) with respect to z; we find

(60)

d0zsince -az - O. On combining Eqs. (57) and (60), we find

(61)

We have two alternatives. If

o ,
r

then

d0
raz= 0
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If on the other hand

then Eq. (58) gives

(]
r

(] - 0 = +'y3 ke z - (63)

(64)

dO
so that Eq. (62) is again satisfied since d~ =0, Hence, Eq. (62) ~5
satisfied under all conditions.

A similar line of reasoning can be used to show the stresses are
axially symmetric. We have from Eq. (50)

d(O' +0' )
Z 1"--:-:--=- = 0
de

Eg. (58) gives

(20
z

dO
z

-- +
de

(65)

Eqs. (64) and (65) give

and we finally obtain

dO
(0 - 0 ) -.-!. = 0

r Z de (66)

dO
z

38 = 0,
dO

r
de o (67)

To summarize, if u = f(r), w = fez), and v = 0, then the stresses
and strains are independent of e and z, provided the cylinder is stress
free in its initial unloaded state. A square element in an r,z plane,
with sides parallel to the rand z axes, becomes a rectangle with sides
having the same orientation3 The rotations are zero, as can be seen
from the following formulas

= l (au _ aWl
we 2 dZ 3r

= l (~ + v
Wz 2 dr r

(68)

3. Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity,
Dover Publications, New York, 1944. Page 66.
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On referring to Eqs. (1). (2) and (3) we see that

W :: O.r w = 0z (69)

The type of displacement which occurs in the r.z plane, in both
the elastic and plastic zones, is shown in Figure 2.

D

D

D

ALLOWABLE
TRANSLATION
AND NORMAL
STRAINS

NOT
ALLOWABLE
ROTATIONS
ARE ZERO

NOT
ALLOWABLE
SHEAR STRAINS
ARE ZERO

FIGURE 2. Deformation in a Pressurized Elastic Perfectly Plastic
Cylinder

We have analyzed the general nature of the stresses and strains
in some detail, a8 this aspect of the autofrettage process was the
subject of some discussion during an investigation of a premature in a
175mm gun.

IV. DERIVATION OF THE BASIC EQUATIONS

We now show that the Prager~HQdge equations for plastic flow in a
cylinder under plane strain conditions may be modified to account for
a non· zero axial strain. Solution of the revised flow equations does
not lead to a complote solution of the problem; in essence. we must
determine conditions at the elastic-plastic interface that will give
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the correct axial load. An iterative procedure is required, since the
axial load cannot be determined until the integration of the flow
equations has been completed.

The following considerations enter into the derivation of the
basic equations:

1) Compatibility relations, leading to the Prager-Hodge strain
relation.

2) Equilibrium conditions.

3) Compressibility relation.

4) Von Mises yield condition.

5) Prandtl-Reuss flow equations.

6) Continuity relations at the elastic-plastic interface, r=p.

7) End conditions involving the axial strain or axial load.

Items 6 and 7 are closely related; the need to satisfy both
conditions when the axial load is prescribed leads to an iterative
procedure, as the axial load cannot be calculated until integration
of the flow equations has been completed.

The compatibility relation for the strains is expressed in terms
of the Prager-Hodge strain function and the axial strain deviation.
We have

1 au ~)¢ = - (--3 ar r

a¢ 1
2 1 au(3 u _ ~)ar ="3 --+

3r2 r ar 2r

e = £ - e,r r e = £ - ez z
(70)
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and finally

(72)

The strain deviations ee and er can be expressed in terms of ez
and <p. We find

(73)

(74)

These relations are required in the derivation of the flow equation.

The equilibrium equation is written in terms of stress and strain
deviations. We have

(75)

(J
r

s+s ,
r

cr :: s+s
Z z (76)

so that Eq. (21) becomes

But

as
T as

--+ -+aT aT
5 -s
r e

r
= a (77)

or

5 :: 3Ke

as 3K ~
3r = aT

de
d5 3K __z
aT = - aT

(78)

(79)

We eliminate 5 e by using the yield condition.
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s =
K

so that Eq. (58) becomes

where for brevity we have written
V'-4-

k
'"C"2-_-

3
-
s
-2­

r

The ambiguous sign is determined by conditions at the inner surface
during incipient plastic yielding. Since the stresses are continuous
across the elastic-plastic interface the Lame' formulas are correct.
Let

a = inner radius of cylinder

p = radius of the elastic plasti-: interface

b = outside radius

° = -PO' ° =0 at r=ar z 0

° = -PI' ° =<1 at r=pr z 1

° = 0, o =0 at r=br z 2

We note that

°1 = °2

since the tube is elastic in the zone p<r<b. The Lame' formulas give

at r=p (81)

2 2
PlCb +p )

°e =
b2_p2

2 2
poCb +a )

Os =
b2_a2 at r=a (82)

We consider the state of stress for incipient plastic yielding at r=a.
On substituting the appropriate values of or' oS' and 0z into Eq. ($),
we find

2 (b2 2) 2 (b2 2) 2 (3b4+a4)°0 -a - 00pO -a + Po
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Eq. (83) represents an ellipse in Cartesian coordinates, so there are
two permissible values of GO for each value of PO unless the quantity
under the radical sign is zero. Prager and Hodge have shown the minus
sign should be used in Eq. (84) under plane strain conditions. Under
generalized plane strain, open end conditions

G = 0 when r = a,o
the minus sign again prevails. Under closed end conditions, the
pressure of the hydraulic fluid against the end caps produces an axial
tension stress in the cylinder.

222
GO = a pO/(b -a ) when r = a

so the quantity under the radical sign is zero. We assume the minus
sign is correct under all conditions of interest when

a < p ~ b.

We can now determine the conditions at the elastic-plastic inter­
face from an assumed interface pressure po.

I

s = 2 ~ 3[k2 (b2_p2)2_ P12b4;3(b2_a2) (85)z

I b2po/(b2_p2) (86)s = - sr 2 z 1

1 222
(87)se = -s + b po/(b -p )2 z 1

We note that the axial stress deviation is zero or negative at the
elastic-plastic interface. We assume these conditions are also true
in the plastic zone. Then

1 I
(88)5 - - -5 2" skz 2 r

1 1 (89)se - s + "2 sk2 r

s8 + s + s = 0,r z
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as required. On substituting the preceding value of se into Eq. (77),
we obtain

(90)

for the equation of equilibrium.

In writing the Prandtl-Reuss flow equations for the stress and
strain deviators in the plastic zone, we use p rather than t as the
independent variable. This substitution is permissible since p is a
monotonic, increasing function of t during the first loading cycle.
We assume, in summary, that plastic yielding and flow are independent
of the rate of loading; this is true to a first approximation provided
the rate of loading is sufficiently small. First, we eliminate A from
the flow equations

de dS
r r

AS2G - = -- +
dP dP r

dee aSe
ASe,2G -= -- +

3p 3p

obtaining the equation

Now

(91)
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dez
--+

dP

I
e =- (3$-e )r 2 z

On eliminating e, ee' and se from the flow equations, we obtain

and

where, as before, we let



The preceding analysis differs from the original work of Prager and
Hodge mainly in the use of e rather than e as one of the three de­
pendent variables, and in th~ indeterminate conditions at the elastic­
plastic interface. These interface conditions are finally determined
by iteration so that one of the following load conditions at the end of
the cylinder is satisified:

€ = 0 Plane Strain (Prager and Hodge)z

rCJ drz

rCJ drz

= 0 Generalized plane strain) open end condition.

= a2p./(b2_a2) Generalized plane strain, closed end
1 condition.

Equations (72), (90), and (91) form a set of partial differential
equations in the independent variables rand p and dependent variables
~, e , and s. These equations, the initial conditions, and the
bounaary conaitions at the ends of the cylinder complete the formulation
of this problem. The solution is obtained by the method of character­
istics, as described in the next section.

V. THE METHOD OF CHARACTERISTICS

The characteristics are found by determining the conditions for
which a set of six linear equations in the partial derivatives of e ,
~ and s are inconsistent. The first three equations have been Z
derivedrin the preceding section; the second set of three equations
is found from differential relations among dr, d~, and ds .

r

ae
a~ _ 2~z

ar + - =ar r

ae as 3s -s3K __z r r k (92)- ar =ar 2r
ae

f ~
as

f 1
z r

0 (93)ap + - ap =2 op

aez aez-- dr + -- dp de (94)ar ap z

~dr + ~ dp = d~ (95)cpr ap

as asr r-dr + -- dp = ds (96)ar ap r
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where for brevity we have written

f
1 = G[3sr sk Sk

2
]/4k

2

f = G[3sr sk + 3sk
2]/4k2

2

= " 4k
2

_ 3s 2
Sk r

The determinant of the coefficients of the partial derivative is

1 1 0 0 0 0

3K ° -1 0 0 0

0 0 0 f
1 f 2 -1

t:. = dr 0 0 dp 0 0

0 dr 0 0 dp 0

0 0 dr 0 0 dp

or

2
fj, = [f2 - f 1 - 3K] dr(dp)

and finally

2 2 2 2
(97)fj, = [(4G-3K) k - 3Gs ] dr(dp) /kr

The factor (4G-3K) is generally negative for steel, so the entire
bracketed expression is negative. Hence, if

fj, = 0,

then dr=O or dp=O. The net of orthogonal lines r=c , p=c , where the
constants c and c are arbitrary, form the charact~ristigs for this
problem. C~rtain ~artial derivatives may be discontinuous across these
characteristics.

Along the characteristics, the partial differential equations
are replaced by ordinary differential equations.
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c
p

(98)

(99)

d<j> dS rf - - - = 0 along r = c2 dp dp r
(100)

These equations were solved by a first order predictor-corrector method,
starting at the elastic-plastic interface and integrating toward the
inner radius of the cylinder. The predictor equations are

~e + ~<j> = _ 2¢(r) ~r
z r

( 101)

3K~ez !1s
r

(102)

and the corrector equations are

( 103)

!1e + M =z
1 [2 Hr) + 2 <j>(r+l>r) ] !1r
2 r r+l>r (l04)

3K~e
z l>s

r
1

= 2

3sr (r)-sk(r)

2r +
3sr(r+~r)-sk(r+!1r)

2(r+~r) ] ~r (lOS)

The predictor equations were used once and the corrector equations
twice for each set of nodal points involved. The range of integration
for each independent variable was divided into at least twenty equal
intervals.

Integration of the differential equation for the net axial load was
started at the inner cylindrical surface using initial conditions appro­
priate for incipient plasticity.

222Closed End Condition: PO = k(b -a )!b (107)

Open End Condition: PO = v'3 k (b2_a2
)! -.J a2+3b2

(l08)
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(109)

The generalized plane strain condition applies to the closed end and
open end examples.

Calculations for the plane strain condition were carried out in the
manner indicated by Prager and Hodge, and are included for purposes
of comparison. Once the radius p of the elastic-plastic interface is
chosen, the remaining conditions at the elastic-plastic interface are
determined, and integration toward the inner radius can be carried out
without difficulty.

Under generalized plane strain conditions, the pressure at the
elastic-plastic interface is determined by an iterative procedure.
First, a trial value of the interface pressure is selected, generally
by extrapolation from previous results, then the axial stress and other
quantities are calculated in sequence as shown below.

r PI the elastic-plastic interface

t1'r-PI' an estimated trial value

h(b ) J 3 [k2(b2 _p2) 2 _p 2b4],P,Pl =, 1

Z 4 422 222
0"1 = (PI p +3b PI -3k )/(b -p ) (PIP +h)

2 2 2 2
Pl(b +p )/(b -p )

2 2 2
sr = (-3b Pl+hJ/3(b -p )

(llO)

(lll)

(llZ)

(1l3)

(114)

ep - -

e z

2222(1+v)b Pl/3(b -p )E

2 2- Z(I+~)h/3E(b -p )

(llS)

(1l6)

The preceding values of s , CP. and e were used as starting values in
integration of Eqs. (101): (102), ana (103).
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The normal stresses and strains for each nodal point were calculated
concurrently. First, we calculate the axial strain at the e1astic­
plastic interface; according to our assumptions, the axial strain is
constant across the entire cross section.

2 2 2
£ = [(1-2v)p P1-h]/E(b -p ),z

a ~ r ~ b

3 l~Ee = E -ez 2 z 2

3 l~£ = £ -e +
r z 2 z 2

e = E ez z

s = 3Ke

=...J 4k
2

-3s
2

sk r

1 1s = - -s "2 skz 2 r

1 1
s8 = - -s + "2 sk2 r

(117)

(118)

(119)

(120)

(121)

(122)

cr = s+s ,r r cr = s+sz z

Finally, the axial load was obtained by integration. In the
elastic region,

and the plastic region the axial stress was given by the sequence of
equations given above. The axial load is given by

F = 21T (brcr drrJa z
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F 0 in the open end condition

F nPia2 in the closed end condition

If F was not correct, a new interface pressure was chosen and the en­
tire sequence of calculations repeated. The reguli falsi method for
o~t~in!n§ the correct value of Pi worked well for the open end con­
dItIon ' .

Under all end conditions we have

222p. ~ k(b -p )/b ;
I

otherwise we have a negative quantity under the radical sign in the
definition of k. The equality sign holds under closed end conditions
when p equals a; consequently, we find successive approximations for
p. obtained by standard methods did not always satisfy the above in­
e&uality. Moreover, the results were greatly affected by round-off
error. To overcome these difficulties, the successive approximations
for p. were forced to satisfy the above inequality, and the results
were ealculated to a high degree of precision. Details of the method
of calculation finally adopted will be discussed in a forthcoming report.

VI. RESULTS AND CONCLUSIONS

Extensive numerical and graphical results were obtained for a
range of wall ratios, for both plane strain and generalized plane
strain. Results for a wall ratio two, open and closed end conditions,
under generalized plane conditions are presented in this paper.
Additional results, including the effects of varying Poisson's ratio,
will be presented in a forthcoming report.

The results for the open end condition are presented in Figures
3 through 9. The existence of axial stresses is clearly indicated.
We notice that the axial stress has a maximum within the plastic zone
after the elastic-plastic interface has progressed about halfway
through the tube. This result was unexpected, yet appears to be con-

4. Hill~ R.~ The MathematiaaZ Theory of PZastiaity~ Oxford~ 1956.
Pages 112~ 113.

5. Hoffman~ O. and Saahs~ G.~ Introduation to the Theory of Plastiaity
for Engineers~ MaGraw Hill Book Company~ 1953. Page 92.
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FIGURE 3. Axial Stress Distribution Open End, Generalized Plane
Strain Condition
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firmed by recent calculations based on the finite element method6 The
residual axial stress is tensile and equals about one fourth of the
residual circumferential stress for the wall ratio under consideration.

Similar calculations for open end conditions were carried out for
wall ratios in the range 1.5-3.0 inclusive. The corresponding residual
stresses were also calculated, assuming the re-yielding would not occur
at the inner surface; these results are shown in Figure 8. The effective
compressive stresses corresponding to the Von Mises yield condition
were also calculated to determine the maximum wall ratio for which the
effective compressive residual stress at the inner surface was less than
the yield stress; after several iterations a wall ratio of 2.25 was
obtained, as shown in Figure 9. If the entire cylinder yields plastically
when pressurized, then re-yielding will occur at the inner surface for
larger wall ratios; the dotted lines indicate predicted residual stresses
in the absence of re-yielding. A new analysis and a corresponding pro­
gram would be required to calculate the actual stress conditions under
re-yield conditions.

Calculations for the closed end condition were also carried out,
as shown in Figures 10 through 14. The pressure on the end caps of
the cylinder produces a large tensile stress in the cylinder. For this
reason the axial stress is larger than that obtained for the open end
condition, and increases steadily through the thickness of the plastic
zone. In actual practice, we would expect the end conditions would be
intermediate between the open and closed end conditions, as friction in
the seals would contribute to the axial stress. The analysis of this
paper could be modified to take friction into account if we assumed a
constant coefficient of friction for all values of the internal pressure.

Experiments to confirm the predictions of the preceding analysis
and calculations would be desirable. It is essential that the length
to diameter ratio be large enough to prevent end effects from influencing
the stress and strain distribution in the central part of the cylinder,
where presumably these quantities would be measured. Measurements in
both the circumferential and axial directions are required in order to
fully determine the stress distribution on the outside of the cylinders.
Special instrumentation is required to obtain measurements of the strain
at the inner surface due to the presence of oil under high pressure.
The Sachs method of measuring residual stresses can be modified to
measure axial as well as circumferential residual stresses.

6. Chen, p.e.T., The Finite Element Analysis of Elastic-Plastic Thick­
Walled Tubes, Watervliet Arsenal Technical Report WVT-?4039,
September, 1974. Page 23, Figure 5. This peport contains an ex­
cellent bibliography of pecent work, with emphasis on current pe­
search at Watervliet Arsenal.
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In calculating the residual stresses, it has been assumed the
material is elastic and the stress-strain relations are linear during
the release of pressure. However, some non-linearity may be expected
as the re-yield condition is approached, due to the Bauschinger effect.
For this reason the actual residual effective stress may be somewhat
less than the calculated value. It is hoped the analysis and calcula­
tions in this paper will make it possible to delineate the respective
roles of the end conditions and the Bauschinger effect in producing the
observed field of residual stresses.
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NONLINEAR PROBL~~S IN

CHEMICALLY REACTING DIFFUSIVE SYSTEMS

Donald S. Cohen
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ABSTRACT

Various problems occuring in chemical reactor theory and the theory of

chemically or biochemically reacting mixtures are studied. In particular,

we investigate the processes controlling mUltiplicity and its implications

with regard to ignition and extinction in a reactor and the processes by which

stable oscillatory states are set up. In inhomogeneous systems with spatially

and temporally distributed parameters many of the phenomenia are locally dis­

tributed. Various perturbation procedures have been developed to analytically

study these problems and to simplify nQ~erical procedures.
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1. Introduction, We shall formulate and describe certain recently

occurring problems arising in various fields such as the theory of che-

mical and biochemical reactions, chemical and nuclear reactors, com-

bustion, diffusion through membranes and porous media, Joule heating,

and soil mechanics. We do not wish to imply that anyone field, much

less all of them, is treated globally. In fact, we wish to strongly em-

phasize the point that although the equations describing the various pro-

blems have a certain common form, the parameters and specific non-

linearities are different, and the specifics of each problem clearly deter-

mine the techniques used and the results obtained. It is just not enough

to think formally about a class of problems of which the one of interest

is a special cas e. Thus, although we present the gene ral class of equa-

tions for the above-mentioned fields, we shall present results only for

two specific problems in an attempt to give some idea of the type of

techniques used and the kinds of results obtained. A rather complete

history of recent work as we 11 as references to the work of many resear-

chers can be found in the references [1] -[ 5] .

Mathematically, in the simple st one- dimensional geometries all the

problems consist of finding the temperature T (x, t) and the concentra-

tions C.(x, t)
1

1 = 1 , o •• , N, of the reacting specie s at any point

x at any time t in the region of interest, Allowing for chemical reac-

tion, molecular diffusion, and convection, the governing equations for

eithe r adiabatic or non -adiabatic situations are given by

(1)

( 2)

aT ~ (Do aT) aT
F o (C l' ••• , C

N
T)= - ao +at ax ax ax

ac.
B

ac. ac.
__1 = (D. 1 1 F. (C 1 , . .. ,CN' T)-)- Q'i ax + i = 1,oo"N-lat ax 1 ax 1

, .
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Here the Dk represent the diffusion coefficients (which in some problems

could depend explicitly on the C k andlor T), Q'k are known constants,

and the F k are almost always of the form of polynomials in the con­

centrations C
k

multiplied by the usual exponential Arrhenius tempera­

ture dependence (or sums of such forms). We shall confine our atten-

tion to the one-dimensional situation described by (1), (2). The neces-

sary modification for a multi- dimensional problem is clear; namely, the

diffusive terms become div(D
k

grad' and the convection terms in-

vol ve the appropriate gradients. Note that we need only the equations

for (N - 1) concentrations since the usual stochiometric equation (mas s

balance) easily gives the concentration of the remaining species once all

the others are known.

In actual reaction problems three situations all occur which make

simplification of the system of equations (1), (2) possible. (i) Some of

the equations completely decouple from the rest (by themselves or in

blocks). (ii) Three time scales usually predominate so that some com­

pounds are formed much faster or much slower than the scale of inter·

est. Thus, some compounds are formed or destroyed so fast that they

can always be considered in equilibrium, and some compounds can be

taken to be constant (often at non-equilibrium valuea) because they are so

slowly reacting and thus simply undergo a slow drift in the value of the

concentration. (iii) Various dimensionless parameters occur in Widely

disparate sizes. Thus, a very successful approach has been to combine

singular perturbation methods for both large and small values of various

parameters with multi-time scale perturbation methods. For problems

in the theory of both continuous stirred tank and tubular chemical reac­

tors A. B. Poore [p] has found with various numerical checks that the
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perturbation analysis for large Peclet number (P -- 00) provides good

results for P as low as Z or 3, and the analysis for small Pec1et

number (P 0) provides good results for P close to unity. Thus,

it is believed that the perturbation analysis yields all possible phenomena

which can occur.

To illustrate the diverse phenomena which can occur we will des-

cribe one set of operating characteristics for a simple non-adiabatic tu-

bular reactor for one range of the paramete rs.

lIull

-- stable steady state
oHMH+ unstable steady state
rrr stable periodic solution
... unstable periodic solution

'-:;~------'-_......L.._--L._---------"""'D

o DB Dp DA

Fig. I

Figure 1 is the response diagram (i. e., the behavior of the ampli-

tude of the temperature WI II = max [T]
o"';x",;l as a certain parameter, the

Dahmkohler number D, varies) for values of the physical parameters in

certain ranges (and these ranges are given explicitly by A. B. Poore [6)). We

shall trace the process as D is increased starting at a small amplitude stable

steady state for D near O. The response moves along the path OJA.



As D IS increased past DA' the tempe rature undergoe s a jump to a

large amplitude stable periodic response above point L, and as D is

further increased, the amplitude of this oscillation decreases until the

oscillation vanishes at point Q. The stable steady state is followed up

the branch through K as D increases still further. Now, as D is

decreased, the proceSS follows the branch KQLMB, the solution being

steady and stable from K to Q and from M to B with a stable

os cillation of increasing amplitude from Q to M. As D decrease s

through D
M

, the oscillation just ceases (subcritical branching at P).

As D is decreased below DB' there is an extinction as the response

jumps to point J and then follows the path J to O. The analysis

and numerical computations to support this description are given in

[7]-[8].

For the continuous stirred tank reactor and the simple tubular

reactor it has been possible to identify fourteen or fifteen different re-

sponse diagrams depending on the various ranges of the six independent

physical parameters. Briefly stated, many of the outstanding problems

consist of finding all the possible response diagraITls for ITlore involved

reactors such as adiabatic and non -adiabatic packed bed and moving bed

reactors perhaps involving higher order kinetics. An extremely interest-

ing implication of some of these di stributed type reactor s is the appear-

ance of solutions involving interior and ITloving boundary laye rs [lOj.

To illustrate the types of phenomena cur rently arising in problems

involving so-called localized temporal and spatial instabilities we shall

consider the

(3)

(4)

following

au
at

av
at

equations:
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Here B is a parameter and A(x) is a given function of x. These

equations (together with appropriate boundary and initial conditions) have

been proposed by 1. Prigogine (see (11], (12] for references) as a model

to describe observed localized temporal and spatial structures involving

concentration waves and localized instabilities in chemically reacting sys­

tems. The equations (3), (4) arise in writing the conservation laws for

a chemical reaction A + B - D + E through a certain autocatalytic step.

u and v repre sent the chemical concentrations of two reactants, and

once they are found the concentrations of all other products and reactants

are found by solving certain linear parabolic problems by routine methods.

Perhaps the simplest presentation of some of the phenomena con­

tained in this system can be made by means of Figures 2 to 9 which have

been taken from [11]. The (D2 ,B)·plane is divided into three regions

as shown in Fig. 2.

x

B

m

I

Fig.2 Fig.3

For fixed Dz , 13 in region I there exists a unique steady state solution

v, v of the problem, and thes~ solutions have the form illustrated in

Fig, 3. As the values of D2 and B are changed so that we cross



from region I into region II, these solutions become unstable and the

new stable steady states of Fig. 4 evolve. These new states clearly

differ significantly

u u

o

Fig. 4

x o

Fig. 5

x

from the old states only through a localized spatial oscillation. As We

cross from region I to region III, the stable steady states of region I

lose their stability, and localized stable temporal oscillations (i. e., con-

centration waves) are set up as illustrated in Figs. 5-8 (which show the

behavior of the solution over half a period). For fixed 1
X = '2, Fig.9

shows that this oscillation is of relaxation type.

u

o

Fig. 6

x
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o

Fig. 7

x



u u

X= 1/2

o

Fig. 8

x o

Fig. 9

t

Thus, as stability boundaries are crossed the neW stable states

differ from the old stable states only in local regions. This localization

is due to the non-uniform distribution A(x) of the reactant A. Mathe­

matically, this phenomenon is suggested by the presence of turning-points

in the linearized stability equations. The analytical calculations to sup­

port the structure as we have just described it is given by J. A. Boa

[12] by using various combinations of WKB, singular perturbation, and

multi-time scale perturbation techniques.

The model We have just described is one of the few currently re­

ceiving considerable attention in that it is a simple reaction -diffusion sys­

tern with qualitatively accurate descriptions of certain simple reacting

systems. In particular, it is thought that ce rtain aspects of the Belousov­

Zhabotinsky reaction (see [13] and [14] for detailed descriptions) can be

accounted for with this model. This reaction yields relaxation oscillations

and various concentration wave interactions all easily visible to the naked

eye as color changes in the reacting chemicals. The results of N. Kopell
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and L. N. Howard [14], [15] and J. A. Boa [12J and J. A. Boa and

D. S. Cohen [4] account qualitatively for much of the observed phenome-na.

Ultimately, it would be desirable to consider the ITlore complex

problems in biochemical pattern formation (i. e., the spatial and temporal

structure of the evolving systems). Experimental observations are avail-

able and SOITle generally accepted mathematical models exist. Of particu-

lar current interest are certain questions concerning biochemical oscilla-

tions (on scales ranging from a few seconds to several days). A review

containing an extensive list of references has been given by B. Hess and

A. Boiteux [16]. In many problems the chemical kinetics (fo r exaITlple,

the rate functions) and the (possibly nonlinear) diffusion coefficients are

not cOITlpletely known, but their general forms are usually known, and

from this it is possible to derive much of the qualitative theory.
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George Morales
Army Missle Test and Evaluation Directorate (TE-PC)

White Sands Missle Range, New Mexico 88002

and

Robert G. McIntyre

University of Texas at El Paso
El Paso, Texas 79968

and Instituto de Ciencias Biomedicas
Universidad Autonoma de Ciudad Juarez

Juarez, Chihuahua, Mexico

ABSTRACT. The potential function is approximated in the one dimen­
sional Schrodinger equation by a step function with an arbitrary, finite
number of steps. In each step the resulting differential equation has
constant coefficients and is integrated exactly in terms of the trigono­
metric or hyperbolic functions. The solutions are then matched at the
interface of each layer. The eigenfunction is then constructed over the
entire domain. This numerical method has certain unique features; (a)
the potential function does not have to be known analytically; (b) for a
given fixed number of steps in the potential approximation, all the eigen­
functions and eigenvalues have the same absolute accuracy; (c) any number
of eigenvalues and eigenfunctions can be obtained in a single computer run
without any need to guess initial eigenvalues; (d) for a given fixed num­
ber of steps in the potential approximation we could obtain the whole in­
finite spectrum of eigenvalues and eigenfunctions; (e) very low computation
time on the computer.

1. INTRODUCTION. A numerical method is presented for the solution of
one dimensional Schrodinger equation which is rather good from a practical
(computation time) and conceptual point of view.

The potential is approximated by a step function with an arbitrary
but finite number of steps. In each step the resulting differential
equation has constant coefficients and is integrated exactly in terms of
trigonometric or hyperbolic functions. The solutions are then matched at
the interface of each layer, and the eigenfunction is then constructed
over the entire domain. A very familiar idea in Quantum Mechanics is used
in the development of the numerical method which is the matching of the
Schrodinger equation solutions and their derivatives at the interface of
the square well potentials used and then solving for the constant coeffi­
cients. This work represents the implementation and testing of a Ilumeri­
cal algorithm which solves the Schrodinger equation for a step potential
function with an arbitrary number of steps.
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This method has been tested on several problems and the numerical
results are very good. The only input into the computer program is a
numerical table of the potential. No initial estimates of the eigen­
values are necessary. The computer program in a single pass will output
any desired number of eigenvalues and the corresponding eigenfunctions and
their nodes. Computation time is roughly equal for the eigenvalues as for
the eigenfunctions. The eigenvalues are computed independently from the
eigenfunctions and can be computed only by themselves thereby cutting com­
putation time in half if only the eigenvalues are wanted.

In this numerical method the potential is approximated by a step
function, but once the approximate Schrodinger equation is set up, it is
solved exactly. What this implies is that all eigenvalues and eigenfunc­
tions are all of the same accuracy. The reason for this is that all the
eigenfunctions are exact solutions to a given Schrodinger equation (i.e.,
they are written down explicitly in terms of trigonometric and hyperbolic
functions). The numerical results obtained substantiate this expectation.

In more conventional methods such as Rayleigh-Ritz [1], the higher
eigenvalues and eigenfunctions are not as accurate as the fundamental
eigenvalue and eigenfunction, making it necessary to progressively increase
the number of mesh points in order to compute higher eigenvalues and eigen­
functions. The reason for this is that the eigenfunctions are themselves
approximations to the solutions of a given Schrodinger equation. In any
one of these conventional approximation methods, as the higher eigenfunctions
oscillate more rapidly, as their order increases, more mesh points are neces­
sary to compute them with a given accuracy. This does not occur in the
method presented in this thesis.

2. STATEMENT OF THE PROBLEM. The one dimensional Schrodinger equa­
tion is written in dimensionless form as

or

(1) o

where V(x) is the potential function and E is the energy eigenvalue. For
central field problems and for bound states

(a) V(x) is infinite at the origin x = 0,
(b) V(x) has a negative minimum value for some x = a,
(c) V(x) approaches zero asymptotically as x + 00.

We could also consider problems for symmetric potential wells with
infinitely high walls, because this method is quite general and can be
applied in both cases. The Schrodinger equation will be treated as a
Sturm-Liouville problem (i.e., the calculations are restricted to a finite
domain), and therefore the character of the potential function V(x) is of
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secondary importance with respect to the computations. We will restrict
Eq. (1) to the following homogeneous boundary conditions

(2) yeo) = y(L) = 0

The boundary conditions (2) are rigorous for a potential well problem
with infinitely high walls; for a central field problem it is necessary to
approximate the right boundary condition such that the eigenfunctions remain
finite for x by taking suitably large L in (2) [2]. This is a good approx­
imation since for large enough L, the eigenfunctions approach infinitely
small values.

3. ANALYTICAL ASPECTS. We begin by approximating an analytical
potential Vex) such as in Fig. 1, if available, by a step function in a
well defined way which need not be specified now, in the following way:

(3) V(x)· V3

V
n

x < x < x
n-l n

L

In (3), the constant values V1 ,V2 "."Vn are step function approxi­
mations of an analytical potential Vex). The potential can be approximated
with arbitrary accuracy OCh), if a sufficiently small step width h = xi ­
xi-l is utilized [3]. Therefore, our approximate problem (3) can approach
the exact problem as closely as we desire, solely by picking the desired
step widths h. The analytical form of the potential need not be known in
order to apply the approximation (3). (See Fig. 2.) Once a given number
of steps is chosen, the approximate problem is solved exactly in terms of
elementary trigonometric and hyperbolic functions.

In each layer i, the approximate problem becomes

(4)

We shall define

0, i 1,2, ••• ,n

(5) a. - E - V.
1. 1.

b~ _ la.1
1. 1.

so that the solution to (4) is



V(x)

Reflecting Region

v - Vmin

Bound State Energy Eigenvalues

l\

Figure 1. Typical Attractive or Repulsive Potential Curve o
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V(x)

I
I
I
I
I
I
I
I I I I

_LL.1-L_.o x1x2x3x
4

Width h

x

Figure 2 0 Typical "Stepped" Potential Indicating Step Widths.



(6) y A.F(b.x) + B.G(b.x), i
1. 1. 1. 1.

2,3, ••• ,n - 1

where F and G are given in Table I, and A. and B. are integration con-
stants. 1. 1.

Table I

Solutions of Equation (4)

F(b.x)
1.

G(b.x)
1.

a. < 0 (Forbidden Region)
1.

cosh(b.x)
1.

b: 1 sinh(b.x)
1. 1.

a = 0
i

1

x

a. > 0 (Allowed Region)
1.

cos(b.x)
1.

b: 1 sin(b .x)
1. 1.

These solutions exhibit the well-known fact that the Schrodinger
equation solutions are oscillatory within the region defined by the two
turning points and exponential outside. In central field problems, the
classical turning points are defined by

(7) a. - E - V
1. i

o

where the total energy equals the potential energy. Classically this is
the point at which the incident kinetic energy of the incident particle
equals its potential energy, and therefore the point at which the kinetic
energy of the particle is zero. It will, at the next instant, change the
direction of its motion; therefore these points, at which E = V., are
referred to as "classical turning points." It is interesting t~ note here
that other approximations, namely the W.K.B.J.* approximation, fail in the
neighborhood of turning points and require special consideration [4]. Any
one of a number of textbooks on Quantum Mechanics will cover the W.K.B.J.
approximation [5]. In summary, the W.K.B.J. method is a short wave length
approximation technique used for solving the Schrodinger Eq. (1). As the
wavelength decreases the variation of the potential V(x) over one wave­
length becomes smaller. The approximation is then made that in the limit
we may consider the potential V(x) as a constant for several wavelengths
about x and that in this region the momentum is

(8) p(x) = 12m(E - V(x))

The corresponding approximate solution of Eq. (1) is then given by
the plane wave solution

(9) y = exp(± i/h! p dx)

*The letters W.K.B.J. stand for G. Wentzel, H. A. Kramers, L. Brillouin,
and H. Jeffreys, who more or less independently rediscovered the procedure
in connection with the solution of different problems.
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The "quasi-classical" condition that the wavelength of the particle
vary slowly over distances of the order of itself is written

where A(X) ~ 2nh/p(x) is the de Broglie wavelength of the particle and

is the wave number.

.E.=k
h

~2fi(E - V)
hL

Condition (10) can be rewritten as

(11) I~x (h(2m(E - V»-1/2)I 1- %(2m(E V)-3!2 ~ (2m(E - V)!
dx

= I fih dV(x) I « 1
(2m(E _ V)3/2 dx

It can readily be seen that the solution (9) will fail at those
points (the turning points) at which E = V(x), that is, the zeros of
Eq. (11). This problem is not encountered in our method of solution.

The solution (6) in regions land n are given respectively by

(12) A F(b x) + B G(b x)
n n n n

Now applying boundary conditions (2) to these solutions, we obtain

(13) y = B G[b (x - L)]
n n

since in neither region 1 or n is the function F equal to zero, which in
turn implies that

A = a
n

The function G is defined in Table I, and B1 and B are integration
n

constants.

We are now left with the straightforward task of determining the
integration constants Ai and B.• This is done by matching the solutions
(6) and its derivatives at the1interfaces, namely
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(14) - Y y
1
'· = v).!·+lYi - i+l' _ / •

The general equations for matching the solutions and its derivatives
at the ith interface are

A.F(b,x.) + B.G(b.x.)
~ J. 1 11),

(15)
A.F'(B.x.) + B.G'(b.x.) = A.+1F'(b.+1x.) + B.+1G'(b.+1x.)

). ). J. ). ).). ). ].). ). ). 1

At the first interface, which involves boundary region 1 in which
Al = 0, the first matching pair of solution and derivative equations
become

(16)

At the second interface the matching pair of solution and derivative
equations are

(17)
A2F(b2X2) + B2G(b2x2) = A3F(b 3x2) + B3G(b 3x2)

A2F'(b2x2) + B2G'(b2xZ) = A3F'(b3x2) + B3G'(b 3x2)

This matching process is performed at all interfaces until reaching
the interface at Xu-I which involves boundary region n in which ~ = o.
Therefore, the final pair of equations matching solution and derivative
at the rightmost interface xn-l are

(18)
A IF'(b IX 1) + B lG'(b IX 1) = B G'[b (x 1 - L)]n- n- n- n- n- n- n n n-

Rew£iting this system of equations in a homogeneous form, we obtain

(19) ··•
An_lF(bn_lXn_l) + Bn_lG(bn_lxn_l) - BnG[bn(xn_1 - L)] = °

An-lF'(bn_lxn_l) + Bn_lG'(bn_1xn_1) - BnG'[bn(xn_1 - L)] = °
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In (19) the primes designate the derivates of the functions eval­
uated at the interfaces. System (19) is a homogeneous system involving
2n - 2 equations and 2n - 2 unknowns (Ai' i = 2,3, ••• ,n - 1; Bi , i =
1,2,3, .•. ,n). In order to solve for non-trivial solution of the unknowns
we must require that the determinant of the coefficients of system (19)
be identically zero. That is,

(20)

The zeros of this determinant equation are the eigenvalues of the
approximate problem, (1), (2) and (3). For each eigenvalue, there is a
non-trivial solution for Ai and Bi which in turn defines its correspond­
ing eigenfunction. From this point on, IAI will be looked upon as a
function of a real variable E, namely feE) = IAI.

At this point we shall point out differences between system (19) and
those obtained by the variational methods, in particular the Rayleigh­
Ritz method [1]. In the latter variational method one obtains a homogen­
eous system in which E is a dependent variable, that is, an algebraic
system. If the algebraic system is of order n, one can only obtain n
eigenvalues and eigenfunctions. Moreover, there is no definite guarantee
that the values of E obtained in this method will be the exact values, as
there is no rigorous establishment of convergence in the Rayleigh-Ritz
method. On the other hand, the homogeneous system (19) that we derived
is a transcendental system. The merits of this system are obvious. The
determinant Eq. (20) is a transcendental equation and will always have an
infinite number of real roots (zeros). As will be seen later, one can
easily define an iterative process whereby we can span a definite energy
range, thereby driving the determinant equation to zero at the real eigen­
values encountered in that range. As with any trancendental system, the
accuracy desired is only limited by a practical consideration, namely,
computational time. The fact that all the roots are real is guaranteed
by the fact that (1), (2) and approximation (3) form a Sturm-Liouville
system [6]. Equation (1) is a type of Liouville equation whose differ­
ential operator

(21)
d L

H = dx 2 + E - Vex)



is a hermitian operator. Indeed, consider two eigenfunctions ul(x) and
U2(X) being operated upon by H, that is

(22)

Now multiplying on the left the equation for ul by u2 and the equa­
tion for u2 by ul and subtracting:

(23)

or

(24)

but, since

(25)

we have

(26)
d2 d 2

Uz --- ul - ul --- Uz
dx2 dx2

The reason we obtain so simple a relation as (26) for comparison is
because the modified Liouville Eq. (1) is self-adjoint. This in turn
implies that H in (21) is a hermitian operator. It is an easy task to
show that the eigenvalues of a hermitian operator are real. Consider the
inner product of the two eigenfunctions u and Hu:

(27) (u,Hu) = (u,Eu) = (E*u,u) = E*(u,u)

where E is the eigenvalue of the hermitian operator H, and E* is its com­
plex conjugate. Since H is hermitian,

(28) (u,Hu) = (Hu,u) = (Eu,u) = E(u,u)

Subtracting (28) from (27) we obtain

(29) E*(u,u) - E(u,u) = 0

Since (u,u) = 0, therefore

(30)

which implies that E is real.

E* - E
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4. THE NUMERICAL Y£THOD. In this section we shall deal primarily
with the algebraic manipulations necessary to implement a numerical solu­
tion of Eq. (19). We will first cover the matrix algebra analysis of
determinant (20), and then discuss the computation of the eigenfunctionso

A. The Eigenvalue Equation. Equation (20), from now on, will be
referred to as the eigenvalue equation. We have already stated that the
determinant equation will have an infinite number of real roots that are
the bound state eigenvalues for the approximate problem (1), (2) and (3).
At this point we will shift the elements in the last column to the second
column. The roots of (20) are not affected by this. By doing this, (20)
becomes

-F(b2x1)
I

-F(b2x,)

F(b2x2)

r'(b2x2)

- G(b2x,)

- G(b2X,)

G(b2x2)

G'( b
2
x
2

)

-F(b3x2) - G(b3x2)
I /

-F(b3x2 - G(b3X2)

-G[bn(xn_1 - L)J
I

-G[b (x , - L)]n n-

F(bn jX n- 1)
I.

F(b,_lXn_1)

(31)

= 0

We will group the elements in determinant (31) in 2 x 2 sub-matrices
as follows:

(32)
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The sub-matri.ces in the first and last row of first column of deter­
minant (32) correspond to the first and last regions specified by bI and
bn and the first and last interfaces specified by xl and xn-l - L. All
other sub-matrices of determinant (32) are of the same form and refer to
a single region specified by hi' i == 2,3, ••• ,n - 1 and a single lnterface
specified by Xi' i == 2, ••. )n - 1.

~Je shall now define the 2 X 2 sub-matrices in determinant (32) as
follows:

(33)

",,(G(b1Xl)

\c I (b1xl)

(
'FCb ,x,)

== J 1

\F' (b.x.)
J 1

0\
01

G(b ,x,) )
J 1 0

G' (b .X.)
J 1

A 1 1n-.l,

~G[b (X - L)] ')n n-l

-G'[b (x - L)]
n n-l

A zero will designate the null 2 X 2 sub-matrixo Equation (32) can
now be written in a more compact and handable form, namely;

IAI= An -A12 0 0

0 A22 -A23
0

0 0 A33
0

0 0 0 An-3,n-3 -A 0n-3,n-2

0 0 0 0 A -An··2,n-ln-2,n-2

An_1,lO 0 0 0 An-l,n-l

(34) == 0

-1
Post multiplying the last column by -A A 1 and adding then-l,n-l n-l,

result to the first column we obtain
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IAI;: All -A12 0 ... 0

0 A22 -A23
0

a a A33
... 0

0 a 0 ... A -A 0n-3,n-3 n-3,n-2
A A-1 A 0 0 0 A -An-2,n-1 n-1,n-1 n-1,1 n-2,n-2 n-2,n-1

0 0 0 0 0 An-1,n-1

(35) = a •

Now expanding determinant (35) by the last row

o

. . .

. . .
. .

o

o

o

0 0 0 A -A an-4,n-4 n-4,n-3
0 0 0 0 An-3,n-3 -An-3,n-2

A A-1 A 0 0n-2,n-1 n-1,n-1 n-1,1 0 0 An-2,n-2
(36) = a

The second determinant on the right-hand side of Eq. (36) has the same
form as the original determinant (34). We now repeat the process. Post
multiplying the last column of the second determinant on the right-hand
side of (36) by -~!2 n-2Au-2 n-l~!l n-lAn-l 1 and adding the result to
the first column we obtain' , ,
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IAI ::: IAn -1,n-11 X

All -A12 0

0 A22
0

0 0 0

o
A A-1 A A-1 A
n-3,n-2 n-2,n-2 n-2,n-1 n-1,n-1 n-1, 1

o

(37)

a

o

o

= 0

-An-4,n-3
An-3,n-3

o

o

-An-3,n-2

An-2,n-2

Again, expanding the second determinant in Eq. (37) by the last row,
we obtain

1\11 -A12 0

0 1\22
... 0

0 0
• I • 0

0 0 • •• An-5,n-S-An-5,n-4 0

0 0 • •• 0 A -/\ .
n-4,n-4 n-4,n-3

/\ i\- 1 . J\ It 1 /\
11- 1, 1 0 0 0 /\11-3,11-2 n-2,n-2 11-2~,n-l n-l,n-1 ••• n-3,n-3

(38) = 0

The third determinant on the right-hand side of Eq. (38) has the same
form as the original determinant (34). It is evident that we can repeat
the process recursively n-2 times to reduce the original eigenvalue Eq. (34)
to the form

685



IA IXIA IXIA Ix •.• XIAn-l,n-l n-2,n-2 n-3,n-3' 22

(39) A A-I A I
n-2,n-1 n-l,n-l n-l,l o .

From Eq. (33) and Table I it is evident that

(40) IA .. I.-;l, i
1.1

Therefore, Eq. (39) reduces to

2,3, .•. ,n - I

(41) A A-I A I
n-2,n-l n-l,n-l n-l,l o •

We have, thus, reduced the evaluation of the determinant of a
(2n - 2) x (2n - 2) matrix in (20) to that of a 2 x 2 matrix on the right
side of (41).

Consider a bound state eigenvalue corresponding to an eigenfunction
with two turning points. In Fig. (4) the turning points are indicated at
tl and tz. In the classically forbidden regions, the eigenfunction behaves
exponentially, that is

(42) a. _ E - V. < 0
1 1

By Table I, the eigenfunctions in these forbidden regions are
expressed in terms of hyperbolic functions, reflecting their exponential
behaviour. At this point it is necessary to point out that we would run
into formidable numerical problems if we were to evaluate Eq. (41) directly
using (33). This is because in the classically forbidden region the eigen­
function might be several orders of magnitude smaller than in the allowed
region. In numerical methods these problems are known as scaling problems
[7], or as asymptotic problems. The reasons can be understood by further
examination of Eq. (41)0 Consider the nonsingular matrix in (41) furthest
to the right of the turning point; see also Eq. (33) and Table I.

(43) An-2,n-l (

cosh b IX 2n- n-

b lsinh b xn- n-l n-2

sinh(b IX 2)!b I)'n- n- n- .
cosh b IX 2n- n-

In quantum mechanics problems, the arguments of the hyperbolic func­
tions in (43) can grow quite big, say in the neighborhood of 100. We
would be in trouble because

(44) sinh 100 = cosh 100 _ elOO!2
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When numerically multiplying the 2 x 2 matrices in (41), while
evaluating the determinant A = feE), differences such as sinh 100 ­
cosh 100 must be evaluated numerically and the computer returns them as
zero. That is, the direct evaluation of A = feE) gives the result

(45) A = feE) _ 0 ,

for E in the range of interest.
the matrices in (41) except the
ments are blxl and bn(xn-l - L)

We can remedy this problem by grouping
two singular All and Au-I 1 whose argu­
respectively (see Eqs. (33», as follows.

By performing matrix multiplications and using elementary addition
formulas for the circular and hyperbolic functions we shall derive
expressions for the matrix product Ai_l,iAili in the classically forbidden
region outside the turning points expressed'by

(46) a. =E - V. < 0
~ ~

and in the allowed region inside the turning points expressed by (see
Fig. 4»
(47)

(48)

a. _ E - V. > 0
~ ~

Using (33) we obtain the following matrices:

(

F(b.X,) G(b.X.»)
A = ~ ~ ~ ~

ii F' (b .x . ) G' (b. x , ) ,
~ ~ ~ ~

A. 1 '
~- ,~

(49)

The determinant of A.. is given by
~~

IAiil = l, i = 2,3, .•• ,n - 1

The inverse of A
ii

is given by

1
(

' (b,x.)- ~ ~

A" =
~~ G(b.x, )

~ ~
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(50) 1
(

G' (b .x.)- ~ ~
A .• =
~].

, -G(b.x.)
~ ~

-F' (b.X.»)T
l l .

F(b .x.)
. l ~

The matrix product Ai 1 .A~: is given by- ,~ ~].

1
(

F(b .x. 1)- ~ ~-

Ai _1,i
A
ii = F'(b.x. 1)

]. ~-

G(b.x. 1) )(G'(b.X.)
~ ~- ~ ~

G'(b.x. 1) -G(b.x.)
~ ~- . ~ ~

-F' (b .X.») T
~ ~ ,

F(b .x.)
~ ~

C
(b.X. 1) G'(b.x.)= ~ ~- 1 1

'(b.x·l)G'(b.x.)
1 l- 1 1

(51)

- G(b.x. l)F'(b.x.) -F(b.x. l)G(b.x.) + G(b.x. l)F(b.x.»)
1 1- 1 1 ~ 1- 1 ~ 1 1- 1 ~

- G'(b.x. l)F'(b.x.) -F(b.x. l)G(b.x.) + G'(b.x. l)F(b.x.)
~ ~- 1 ~ ~ ~- 1 1 1 1- 1 1 •

For the classically forbidden region outside the turning points (51)
becomes

(52)

-1
A. 1 .A..
1- ,~ II (

COSh(b.(X. - x. 1»
~ ~ ~-

= -b.sinh(b.(x. - x. 1»
~ ~ ~ 1-

-1
-b. sinh(b.(x. - x. 1»)

1 1 ~ ~-

cosh(b.(x. - x. 1»
~ ~ ).-

And for the allowed region inside the turning points (51) becomes

(53)
-1

A. 1 .A..
1- ,~ ~~ (

COS(b. (x. ­
~ ~

= b.sin(b. (x.
~ ~ ~

-1
-b. sin(b.(x. - x. 1»)

~ 1 1 1-

cos(b.(x. - x. 1»
~). ~-

This simple manipulation has, thus, eliminated in one stroke all
the scaling difficulties connected with the eigenvalue equation, because
the arguments of the hyperbolic functions have been reduced by at least
two orders of magnitude with respect to (43). For example, if the poten­
tial is approximated by 50 steps, then the step width xi - xi-l = h S 1/50.
The simple, analytical elimination of the scaling difficulties before com­
putation has obvious advantages over a numerical treatment during compu­
tation of the eigenvalues.

This section is concluded with a description of the numerical method
used to find the roots of the determinant Eq. (41), whose matrices have
been grouped as shown in (52) and (53)0 These roots are approximations
to the eigenvalues for the bound states. It will be useful to think of
A in (41) as a function of a real variable, feE),

(54) feE) = IAI
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whose zeros will be determined numerically.
facilitated by the fact that all eigenvalues
the minimum of the potential [8],

The eigenvalue search is
are bounded from below by

(55) E > V
n - min

In (asymptotic) quantum mechanics problems with deep potential wells,
the fundamental energy eigenvalue, E , approaches asymptotically the
potential minimum [9], 0

(56) E -+ V .o m1.n

A computer subroutine EIGEN was written that computes the function
feE) in a predetermined number of integral points in a range

(57) V. <E<V hm1.n - rig t

where Vright is chosen arbitrarily and is to be sufficiently to the right
of Vmin depending on how many eigenvalues are desired. Integral values
for Vmin and Vright are chosen. EIGEN computes feE) for all integral
values of E in the range (57). Whenever a change in sign of the function
feE) at two successive (integral) values of E, it will store those two
values, and proceeds until it encounters another sign change, whereupon,
it will store the two successive (integral) values of E at which the sign
change occurs, and so on. This process is continued until the entire
range (57) of E is scanned.

Having stored all integral intervals of E for which a sign change for
feE) occurred, the subroutine EIGEN will then subdivide these intervals
into ten increments of 0.1 and re-scan each of the intervals for a change
in sign of the function feE) at two successive points. Each one of these
integral intervals will contain two successive points for which the func­
tion feE) will change in sign. This latter set of pairs of successive
points is stored by EIGEN. Again this last set of intervals is subdivided
into ten parts of 0.01 and the process is repeated.

It should now be obvious that this process can be continued indefin­
itely until the desired accuracy of the eigenvalues is reached. For
example, if four iterations are performed, the location of the eigen­
values is ascertained with three decimal accuracy (see the computer out­
put for further examples). The search is terminated when the range (57)
is scanned completely or when a predetermined number of eigenvalues has
been found.

B. COMPUTATION OF THE EIGENFUNCTIONS. It has been found convenient
to rewrite system (19) as
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AIIC~ -
.....>

A1ZcZ = 0

A22c; - A23C; 0

A33c
3

- A
34

c4 = a

A
44

c~ - A4ScS
= a

A c -A C' =0
n-2,n-2 n-2 n-2,n-1 n-1

+ A c' = a
n-l,n-1 n-l

(58)

"""where Aij are the 2 x 2 matrices given by (33) and c. are the following
2 x 1 vectors: 1

(59) 2,3, ••• ,n - 1

The components of the vectors 'cl are the coefficients of the eigen­
functions in the boundary regions 1 and n (see Eq.(13)o The first equa­
tion in (58) represents the first two equations in system (19), that is
(using Eqs. (33) and (59»:

(60)

or, performing the matrix multiplication

(61)
(

Bl G(blXl)

B
1
G(b

1
x

1
)

Equation (61) represents the first two equations of system (19) in
vector form.

The components of the other vector Ci, i ~ 1, are the coefficients
of the eigenfunctions in the inner regions (see Eq. (6». Once the
eigenvalues have been determined, the matrices Aij (Eqso (33) and (50»
are explicitly determined o A direct numerical solution of (58) would
fail because we would encounter scaling problems of a nature mentioned
before in the computation of the eigenvalue Eq. (41)0 These scaling
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problems occur while performing numerical solutions of most quantum
mechanics problems. In what follows, it shall be demonstrated that a
direct numerical solution of (58) would introduce formidable numerical
and computational problems.

Let us determine the coefficients of the eigenfunction at the inner
region (n - 1) furthest to the right, which is assumed to be outside the
turning points tl and t2 in the classically forbidden region (see Fig. 5).

From the last equation in (58), we get

A c~
n-l,n-l n-l

or

(62)

(63)

-" - A-I A ...;.c - - cn-l n-l,n-l n-l,l 1

Let us assume that the eigenfunction is sYmmetric

y(x) = y(-x)

for x in all regions.

Using (63), Eq. (13) and Table I, we have

(64) B < 0
n

Since the eigenfunctions in these regions are uniquely determined
except by a constant factor, we set

(65)

Thus,

B
n

-1

(66)

Multiplying An-l,l by cl ' we get

(67)

-G[bn (xn_l - L)]) ( 1)
-G[b (x 1 - L)] -1n n-

(

G[b (x 1 - L)]) •
A c = n n-
n-l,ll G[b (x - L)]

n n-l



Vex)

Region n

L
~----\---"=----------r---r-~--r-~-r~- x

o

E
n

Figure 5. Potential Curve Indicating Inner Regions n - 1, n
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-1
Now multiplying All by (67), we getn- ,n-

(68)

The arguments of the hyperbolic functions in the Z x 1 vector in
(68) are relatively small, while those in the Z x 2 matrix of (68) are
relatively large, typically in excess of 100. There is now no numerical
difference between the hyperbolic sine and cosine in the matrix multipli­
cation in (68).

Performing the matrix multiplication in (68) we obtain the coeffi­
cients Au-I and Bn-l for the eigenfunctions in region n - 1. Using Eq. (6)
we obtain the eigenfunction in region n - 1,

(69) y(x) = B(cosh b 1 x - sinh b 1 x) = 0, xs(x l'x = L)n- n- n- n

where B is a constant.
cal difference between
the computation of the
identically.

Notice that for bn- l x > 100 there is no numeri­
the two hyperbolic functions in (69). Therefore,
eigenfunction in this region n - 1 would yield zero

This problem can be solved analytically, as was done before with the
eigenvalue Eq. (41), by using elementary addition formulas for the circu­
lar and hyperbolic functions.

Rewriting the first n - Z equations of system (58) as:

(70)

~ -1 .~
Cz = AlZAllcl

~ -1 _~
c

3 = AZ3AZZcZ ,

~

~~Ac
4

=

•
-> ~l A ~c =n-1 n-2,n-1 n-2,n-2 n-2
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It is obvious that we can now write (integrate) system (70) in terms
of the vector c1 as follows:

•...
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alBl + 8 2Bn 1111 0

8 3B1 + 8 4B
n

.. 0

••
t" = A- l A Al A
m m-l,m m-1,m-l m-2,m-l m-2,m-2

-J. -1 ~

c2 = AlZA11cl '

.-,- -1 -1 .-.
c3 = A23A22A12Allcl '

..... -1 -1 -1 -'"
c4 = A34A33A23A22A12Allcl '

Since B1 is an arbitrary integration constant, let

(75)

(76)

(74)

For example, from the last equation in (71)

(72)

(73)

or

The last equation in (71), for m = n - 1, determine C:n-1 in terms
of cl' and the last equation of (58) also express cn-l in terms of cl.
From these two equations we could obtain the last integration constant
Bn which appears in iCl to completely determine the problem.

-1
where D is a 2 x 2 matrix designating the product Am-l,roX.-
[Am-l,m-1~!2,m-l···Al1]' and from (56) we get

-1
where E is a 2 x 2 matrix designating the product -An-l,n-lAn-l,lt
Hence, subtracting the two vector equations we get

(71)



Where ai' i = 1, ••• ,4 designate the matrix elements of the 2 x 2
matrix difference (D - E).

696

Except for the first matrix on the right side of (77), the others
will be grouped in pairs, as follows:

)

-1
G(b.x. 1)

1. 1.-

G' (b .x. 1)
1 1-

T

-F'(b.x. 1»)1. 1.-

F(bix
i
_

1
)

a < x < a

a < x < 00

(

F(b.X. 1)
1. 1.-

F' (b .x. 1)
1 1-

1
= y (a) YR(x)

R

y(x)

y(x)

(

F(b .x.)= 1. 1.

F'(b.x.)
1."1.

(
F(b.X. )

= 1. 1.

F' (b .x.)
1. 1.

(77)

(78)

The matching of the eigenvalues is done by multiplying each piece by
its reciprocal value at x = a, so that both pieces also have the same mid­
point value, that is,

-1
A..A. 1 11.1. 1.- ,

This cannot be readily done because of, again, scaling (asymptotic)
problems. That is, numerical errors would accumulate and propagate if
(58) were solved from top to bottom; that is the same as starting with
an arbitrary value of the eigenfunction at the left boundary and integrat­
ing all the way to the right boundary. To avoid this difficulty, the
solution of (58) as given by (71) is stopped at m = n/2, i.e., the mid­
point of the domain, which is always taken at the minimum (x = a) of the
potential function. In sYmmetric potential problems this is all that is
needed, since the eigenfunction is either symmetric or antisymmetric about
this point (x = a). For central field problems with asymmetric potentials,
after computing the eigenfunction from the left to the midpoint, (58) is
solved via (71) from the bottom till the midpoint, i.e., the eigenfunction
is now computed from the right inward to the midpoint, and then both
pieces of the eigenfunction are matched at the center. The eigenfunctions
so computed on either side of the point x = a are the same except that
they differ by a constant factor, i.e., their derivatives match at the
midpoint.

G(b.x.) )1. 1.

G' (b.x.)
1. 1.

G(b.X.») (G'(b.X. 1)1. 1. 1. 1.-

G'(b.x.) -G(b.x. 1)1. 1. 1. 1.-

(

F(b.X.) G(b.X.») (G' (b.x. 1) -G(b.x. 1»)= 1. 1. 1. 1. 1 1- 1. 1.- ,
F'(b.x.) G'(b.x.) -F'(b.x. 1) F(b.x. 1)

1 1 1 1 1 1- 1 1-

(

F(b1..X1..)G'(b.X. l)-G(b.x.)F'(b.x. l)-F(b.x.)G(bix. 1) + G(b.x.)F(b.x. 1) )_ 1. 1.- 1. 1 1. 1- 1. 1. 1- 1. 1. 1. 1.-

F'(b
1
·x1..)G'(b.x. l)-G'(b.x.)F'(b.x. l)-F'(b.x.)G(b.x. 1) + G'(b.x.)F(b.x. 1) •

1 1.- 1. 1. 1. 1.- 1. 1. 1. 1.- 1. 1. 1. 1.-



Vex)

,

X ::= a
·---------t-I---------------~>

Figure 6. An Eigenfunction Discontinuity at the Midpoint Value of the
Domain.
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For the classically forbidden region (78) becomes,

(79)
-1 )b. sinh[b.(x. - x. 1)]
1 1 1 1-

cosh[bi(Xi - Xi_I)]

For the allowed region (78) becomes

(80)

Notice that the arguments of the hyperbolic functions in (79) are
two orders of magnitude smaller than if the matrices were computed indi­
vidually. Equations (71) will now be written as follows:

p-Jo -1~" -'- A
U

t lCz '" A
12

v
2 Vz ;::

..,.j,. -1..;.. ,...>- -1 ....
c3 '" A

23
v

3
v

3 '" A22Al2All<:1 ,
(81) ... l..-l> ....>. -1.>-...;,

c4
;;; A

34
v4

, v
4

;:;
A33AZ3AZ2Al2Al1cl ,

• •• ••
->- -1-'- ...> A A-I .,.l.

c ill! A .. v , v ;; .... A
1l

cl Q

m m-l,m m m m-l,m-l m-2,m.-l

......
The vectors v in (81) are evaluated by grouping the matrices in

pairs as 8hown in t79) and (80), except the last matrix All where the
arguments of....the hyperbolic functions are bixi' As indicated before,
the vectors vi involve only one arbitrary integration constant Bl • But
we are still in numerical trouble since the inverse matrices Ai} at the
1~ft in (81) still involve large arguments and therefore these 1nverse
matrices are num$rically unstable. The computation of the coefficients
~i still present numerical difficulties.

We can circu.mvent this problem since we do not need to compute the
vectors of the coefficients ci per set After the 2 x 1 vectors vi in
(81) have been computed they will be of the form

~ ,C2~) ,v
2

(82)
v

22

...... .(31),v
3

v 32
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From Eqs. (6), (59) and (81) we have the following expression for the
eigenfunctions in vector form or notation:

-1 --> -'-
y(x) = A. 1 .v.• f(x), i = 2,3,00.,n - 1

J.- ,1 1

(83)

--> -"-
y(x) = c • f(x)

i
,

where f(x) is the vector function

(84)f(x) = (f(biX»)
G(b.x)

1

Now using Eqs. (13), (82) and (84) we obtain the following expression
for the inner product in (83)

y(X)

y(x)

y(x)

[( )1( ]T G )F(b.x, 1) G(b.x, 1) v' l (b,x)

= F'(~i::_l) G'(:i::_l) v:2 • Geb: X)

(

V 'lG' (b .x. 1) - v. 2G(b,x, l»)T (F(b.x»)J. 1 1- 1 1 1- 1

= -v·1F'(b.X. 1) + v· 2F(b.x, 1) G(b,X)'
1 1 1- 1 1 1- 1

eV 'lG'(b,x. 1) - v'2G(b.x. l),-v'lF'(b.x, 1)
1 1 1- 1 1 1- 1 1 1-

(

F (b ,x»)
+ v. 2F(b'X'_1» • 1

1 1 1 G(b.x)
1

y(x) = v. 1G'(b.x. l)F(b.x) - v. 2G(b,x. l)F(b.x)
1 1 1- 1 1 1 1- 1

- v.lF'(b.x. l)G(b.x) + V'2F(b.x, l)G(b.x)
1 J. 1- 1 J. 1 1- 1

(85)

i = 2,3, ••• ,n - 1 0

In the classically forbidden region (85) becomes
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y(x) -1 .= v'lcosh(b,x, l)cosh(b,x) - v'2b, s1nh(b,x, l)cosh(b,x)1 1 1- 1 1 1 1 1- 1

- v'lb,sinh(b,x, l)b~lsinh(b,X) + v'2cosh(b,x, l)b~lsinh(b,X) ,1 1 1 1- 1 1 1 1 1- 1 1

-1
y(x) = v'lcoshb,(x, 1 - x) - b, v'2sinhb,(x, 1 - x) ,1 1 1- 1 1 1 1-

(86)

y(x)

in region i = Z,3, ••• ,n - 1.

In the allowed region (85) becomes

-1 ,=v'lcos(b,x, l)cos(b,x) - v,zb, s1n(b.x, l)cos(b,x)1 1 1- 1 1 1 1 1- 1

- v'l(-b,sin(b,x, l»b~lsin(b,x) + v'Zcos(b,x. l)b~lsin(b,x)1 1 1 1- 1 1 1 1 1- 1 1

-1
y(x) = v'lcosb .(x, 1 - x) - b, v'2sinb ,(x, 1 - x) ,1 1 1- 1 1 1 1-

in region i = Z,3,0.0,n - 1 •
(87)

~

In Eqs. (86) and (87) viI and viZ are components of the vector vi
as defined in (81) and (8Z).

Raving been able to use the elementary addition formulas has allowed
us to analytically perform the inner product in (83), thus eliminating
the need to evaluate hyperbolic functions with very large argumentso It
can readily be seen that in the computation of the eigenfunctions in (86)
and (87), it is only necessary to evaluate the vectors "i in (81) and not
the coefficients Ci in (81). The computation of the vectors vi does not
present any numerical problems.

5. NUMERICAL RESULTS. In this section we will describe some of the
results obtained with the computer subroutine EIGEN. First we dealt with
a central field Quantum Mechanics problem, the radial Schrodinger Eq. (1)
with Morse's potential [10],

(88)

where

Vex) = D(l - exp(-a(x - x »)Z - D
e

(89) a = 0.711248 , x = 109975
e

D = 188.4355

(90)

The boundary conditions (2) used are

yeO) = y(lO) = 0
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The second problem covered was that of Mathieu's Eq. (11), where
the fictitious "potential" is

(91)

(92)

V(x) = 2q cos 2x

The boundary conditions (2) used are in this case

y(O) = y(TI) = 0

Although Mathieu's equation is not a true Quantum Mechanics problem,
Eqs. (1), (91) and (92) can be thought of as the bound states of a parti­
cle in a box of length TI and infinitely high walls with the potential
inside the box given by (91).

The primary reasons why these two problems were chosen are that
Morse's potential has well known analytic solutions [12], and provides
a good check for the numerical solutions of the eigenvalues; and
Mathieu's equation has also been well documented [13] and is a good
check for the numerical results obtained for the nodes of the eigen­
functions.

A. Schrodinger's Equation with Morse's Potential. Morse's poten­
tial was approximated by a step function with an equal number of steps
m = n/2 in the ranges

(93) o < x ~ 1.9975, 1.9975 < x < 10 •

The interface was chosen at the abscissa of the minimum value of
the potential

(94) V(1.9975) = V. = -188.4355
m~n

This potential varies rapidly in the neighborhood of its minimum
than towards the right boundary, where it is relatively flat o The n/2
potential steps in the right range of (93) were taken as follows:

n/4 steps in 1.9975 < x < 4, n/4 steps in 4 < x < 10 •

The step function approximation is
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V1 = .(V(O) + V(x1))/2

V2 = (V(x1) + V(x
2

))/2

Xm-1<x<xm = 1.9975

-188.4355 Xm<x<xm+1 ~

(V(xm+1) + V(xm+2))/2 x
m
+
1
< X( x

m
+
2

Vm = -188.4355

VII1+1 =

V"'+2 =

V(x) =

Vn = (V(xn_1) + V(X n))/2

m :: n/2

(95)

The three step widths used are

o < x < 1.9975, h
1

= 1.9975/(n/2) ,

1.9975 < x < 4, h2 = (4 - 1.9975)/(n/4)"

4 < x < 10 h
3

= (10 - 4)/(n/4)

The eigenvalues were obtained by searching for the roots of the
eigenvalue Eq. (20) in the range

(96) -188.0 < E < -108.0

The numerical results for the first five eigenvalues, when the poten­
tial is approximated by n = 200 steps, together with the exact, analytical
results are given in Table II. Table III contains the nodes of these
first five eigenfunctions.

Table II

First Five Eigenvalues of Schrodinger's Equation
With Morse's Potential

N

200

Exact

EO

-178.777

-178.799

E1

-160.264

-160.283

E2

-142.763

-142.760

E3

-1260275

-126.288

E4
-1100796

-110.809
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Table III

Nodes of Morse's Eigenfunctions

I Nll
N

12
N

13
N

14
N

15

1 0.000 0.000 0.000 0.000 0.000

2 1.888 0.000 0.000 0.000 0.000

3 1. 768 0.000 0.000 0.000 0.000

4 1.688 0 0 000 0.000 0.000 0.000

Nij means the J
th

node of the I
th

eigenfunction.

B. Mathieu's Equation. The Mathieu's "potential" is approximated
as follows:

(97)

V1 ::: V(O) = 2q

V2 ::: (V(x1) + V(x
2

))/2

V(x)= . Vm ::: -2q

Vm+1 = -2q

Vn ::: V(xn) ::: 2q

m ::: n/2

Xm-1<. X <Xm = 7T12

xm<X <xm+1

(98)

The potential has the minimum at the center

V. = V(~/2) = -2qm1.n

The eigenvalues were obtained by searching for the roots of the
eigenvalue Eqo (20) in the range

(99) -70.0 < E < 30.0

The numerical results for q = 40 are given in Tables IV and V, for
n = 200, together with the exact, analytical results taken from Ince's
paper [13].
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Table IV

First Five Eigenvalues of Schrodinger's Equation
With Mathieus Potential

N EO

200 -67.595

Exact -67.606

E
1

-43.342

-430352

E
2

-20.200

-20.208

E
3

1. 736

1.730

E
4

22.337

22.332

Table V

Nodes of Mathieu's Eigenfunctions

I Nn N12
N

13
N
14

N
15

1 1.563 2.757 3.118 0.000 0.000

2 1.359 1. 767 2.882 0.000 00000

3 10202 1.563 1.924 3.071 3.118

4 1.060 1.406 1. 720 2.066 3.087

N.. means the J
th

node of the I th eigenfunction o
1J
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